Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
FEBS Lett ; 595(20): 2593-2607, 2021 10.
Article in English | MEDLINE | ID: mdl-34427925

ABSTRACT

Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pollen Tube/growth & development , Proline/metabolism , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
2.
New Phytol ; 227(3): 732-743, 2020 08.
Article in English | MEDLINE | ID: mdl-32064614

ABSTRACT

Root hairs (RHs) develop from specialized epidermal trichoblast cells, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling RH cell fate is only partially understood. RH cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6). Suppression of GL2 expression activates RHD6, a series of downstream TFs including ROOT HAIR DEFECTIVE 6 LIKE-4 (RSL4) and their target genes, and causes epidermal cells to develop into RHs. Brassinosteroids (BRs) influence RH cell fate. In the absence of BRs, phosphorylated BIN2 (a Type-II GSK3-like kinase) inhibits a protein complex that regulates GL2 expression. Perturbation of the arabinogalactan peptide (AGP21) in Arabidopsis thaliana triggers aberrant RH development, similar to that observed in plants with defective BR signaling. We reveal that an O-glycosylated AGP21 peptide, which is positively regulated by BZR1, a transcription factor activated by BR signaling, affects RH cell fate by altering GL2 expression in a BIN2-dependent manner. Changes in cell surface AGP disrupts BR responses and inhibits the downstream effect of BIN2 on the RH repressor GL2 in root epidermis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3 , Mucoproteins , Plant Proteins , Plant Roots/metabolism , Protein Kinases
4.
Mol Plant ; 8(5): 734-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25655826

ABSTRACT

Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Plant Roots/growth & development , Prolyl Hydroxylases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glycosylation , Hydroxylation , Hydroxyproline/metabolism , Multigene Family , Plant Roots/enzymology , Plant Roots/genetics , Prolyl Hydroxylases/genetics
5.
Methods Mol Biol ; 1242: 59-66, 2015.
Article in English | MEDLINE | ID: mdl-25408443

ABSTRACT

Root hairs are single cells specialized in the absorption of water and nutrients. Growing root hairs requires intensive cell wall changes to accommodate cell expansion at the apical end by a process known as tip growth. The cell wall of plants is a very rigid structure comprised largely of polysaccharides and hydroxyproline-rich O-glycoproteins. The importance of root hairs stems from their capacity to expand the surface of interaction between the root and the environment, in search for the necessary nutrients and water to allow plant growth. Therefore, it becomes crucial to deepen our knowledge of them, particularly in the light of the applicability in agriculture by allowing the expansion of croplands. Root hair growth is an extremely fast process, reaching growth rates of up to 1 µm/min and it also is a dynamic process; there can be situations in which the final length might not be affected but the growth rate is. Consequently, in this chapter we focus on a method for studying growth dynamics and rates during a time course. This method is versatile allowing for it to be used in other plant organs such as lateral root, hypocotyl, etc., and also in various conditions.


Subject(s)
Arabidopsis/cytology , Image Processing, Computer-Assisted/methods , Plant Roots/growth & development , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis/growth & development , Image Processing, Computer-Assisted/instrumentation , Indoleacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/drug effects
6.
Front Plant Sci ; 5: 395, 2014.
Article in English | MEDLINE | ID: mdl-25177325

ABSTRACT

Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.

7.
Plant Signal Behav ; 6(10): 1600-2, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21918376

ABSTRACT

Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensions (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development.


Subject(s)
Arabidopsis/cytology , Arabidopsis/growth & development , Cell Enlargement , Plant Roots/cytology , Plant Roots/growth & development , Cell Wall/metabolism , Glycoproteins/metabolism , Glycosylation , Hydroxylation , Phenotype , Plant Proteins/metabolism , Plant Roots/metabolism , Procollagen-Proline Dioxygenase/metabolism
8.
Science ; 332(6036): 1401-3, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21680836

ABSTRACT

Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Glycoproteins/metabolism , Hydroxyproline/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Procollagen-Proline Dioxygenase/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabinose/metabolism , Carbohydrate Conformation , Gene Expression Regulation, Plant , Genes, Plant , Glycoproteins/chemistry , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Hydroxylation , Models, Biological , Mutation , Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Phenotype , Plant Proteins/chemistry , Plant Roots/cytology , Plant Roots/metabolism , Polysaccharides/chemistry , Procollagen-Proline Dioxygenase/genetics , Proline/metabolism , Protein Conformation , Protein Processing, Post-Translational , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL