Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Chem ; 292: 350-358, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31054687

ABSTRACT

The objective of this study was to quantitatively assess potato omics profiles of new varieties for meaningful differences from analogous profiles of commercial varieties through the SIMCA one-class classification model. Analytical profiles of nine commercial potato varieties, eleven experimental potato varieties, one GM potato variety that had acquired Phytophtora resistance based on a single insert with potato-derived DNA sequences, and its non-GM commercial counterpart were generated. The ten conventional varieties were used to construct the one-class model. Omics profiles from experimental non-GM and GM varieties were assessed using the one-class SIMCA models. No potential unintended effects were identified in the case of the GM variety. The model showed that varieties that were genetically more distant from the commercial varieties were recognized as aberrant, highlighting its potential in determining whether additional evaluation is required for the risk assessment of materials produced from any breeding technique, including genetic modification.


Subject(s)
Metabolome , Plants, Genetically Modified/metabolism , Solanum tuberosum/metabolism , Transcriptome , DNA, Plant/chemistry , DNA, Plant/metabolism , Genomics , High-Throughput Nucleotide Sequencing , Metabolomics , Plants, Genetically Modified/genetics , Principal Component Analysis , Risk Assessment , Sequence Analysis, RNA , Solanum tuberosum/genetics
2.
Genes Nutr ; 10(4): 469, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26022682

ABSTRACT

Dietary flavonoid intake is associated with reduced risk of cardiovascular diseases, possibly by affecting metabolic health. The relative potency of different flavonoids in causing beneficial effects on energy and lipid metabolism has not been investigated. Effects of quercetin, hesperetin, epicatechin, apigenin and anthocyanins in mice fed a high-fat diet (HF) for 12 weeks were compared, relative to normal-fat diet. HF-induced body weight gain was significantly lowered by all flavonoids (17-29 %), but most by quercetin. Quercetin significantly lowered HF-induced hepatic lipid accumulation (71 %). Mesenteric adipose tissue weight and serum leptin levels were significantly lowered by quercetin, hesperetin and anthocyanins. Adipocyte cell size and adipose tissue inflammation were not affected. The effect on body weight and composition could not be explained by individual significant effects on energy intake, energy expenditure or activity. Lipid metabolism was not changed as measured by indirect calorimetry or expression of known lipid metabolic genes in liver and white adipose tissue. Hepatic expression of Cyp2b9 was strongly downregulated by all flavonoids. In conclusion, all flavonoids lowered parameters of HF-induced adiposity, with quercetin being most effective.

3.
Arch Biochem Biophys ; 559: 29-37, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24929184

ABSTRACT

We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and 100mg epicatechin (low and high flavanol apple puree, respectively) and aspirin (75 mg) in random order. Measurements were made at baseline, acutely after treatment (2, 6 and 24 h), and after 14 d of treatment. Low flavanol apple puree significantly attenuated ADP and epinephrine-induced integrin-ß3 expression 2 h and 6 h after consumption and ADP and epinephrine-induced P-selectin expression within 2h of consumption. High flavanol apple puree attenuated epinephrine and ADP-induced integrin-ß3 expression after 2 and 6h. ADP and epinephrine-induced integrin-ß3 expression was significantly attenuated 2, 6 and 24 h after consumption of aspirin, whilst 14 d aspirin consumption attenuated collagen-induced P-selectin expression only. The plasma total nitric oxide metabolite conc. was significantly increased 6h after consumption of both low and high flavanol apple purees. In conclusion, consumption of apple purees containing ⩾25 or 100 mg flavanols transiently attenuated ex vivo integrin-ß3 and P-selectin expression and increased plasma nitric oxide metabolite conc. in healthy subjects, but the effect was not enhanced for the high flavanol apple puree.


Subject(s)
Blood Platelets/drug effects , Catechin/analysis , Catechin/pharmacology , Eating , Food Handling , Malus/chemistry , Nitric Oxide/metabolism , Adult , Ascorbic Acid/blood , Biomarkers/blood , Blood Platelets/physiology , C-Reactive Protein/metabolism , Catechin/urine , Endothelin-1/blood , Humans , Lipids/blood , Male , Middle Aged , Young Adult
4.
PLoS One ; 8(1): e51588, 2013.
Article in English | MEDLINE | ID: mdl-23359794

ABSTRACT

Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9-15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.


Subject(s)
Lipids/blood , Liver/drug effects , Quercetin/pharmacology , Animals , Chromatography, Gas , Chromatography, High Pressure Liquid , Constitutive Androstane Receptor , Fatty Acids, Unsaturated/metabolism , Lipid Metabolism , Liver/metabolism , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
5.
Biochim Biophys Acta ; 1807(6): 697-706, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20732296

ABSTRACT

Cancer cells are resistant to apoptosis and show a shift in energy production from mitochondrial oxidative phosphorylation to cytosolic glycolysis. Apoptosis resistance and metabolic reprogramming are linked in many cancer cells and both processes center on mitochondria. Clearly, mutated cancer cells escape surveillance and turn into selfish cells. However, many of the mechanisms that operate cellular metabolic control still function in cancer cells. This review describes the metabolic importance of glucose and glutamine, glycolytic enzymes, oxygen, growth cofactors and mitochondria and focuses on the potential role of bioactive food components, including micronutrients. The role of B- and A-vitamin cofactors in (mitochondrial) metabolism is highlighted and the cancer protective potential of omega-3 fatty acids and several polyphenols is discussed in relation to metabolic reprogramming, including the mechanisms that may be involved. Furthermore, it is shown that cancer cell growth reduction by limiting the growth cofactor folic acid seems to be associated with reversal of metabolic reprogramming. Altogether, reversal of metabolic reprogramming may be an attractive strategy to increase susceptibility to apoptotic surveillance. Food bioactive components that affect various aspects of metabolism may be important tools to reverse glycolytic to oxidative metabolism and enhance sensitivity to apoptosis. The success of such a strategy may depend on several actors, acting in concert. Growth cofactors may be one of these, which call for careful (re)evaluation of their function in normal and in cancer metabolism.


Subject(s)
Cell Proliferation , Food , Glycolysis/physiology , Neoplasms/diet therapy , Neoplasms/metabolism , Animals , Down-Regulation , Energy Metabolism/physiology , Humans , Models, Biological , Neoplasms/pathology , Nutritional Physiological Phenomena/physiology
6.
J Agric Food Chem ; 57(17): 7693-9, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19722703

ABSTRACT

The vasorelaxing properties of chocolate and wine might relate to the presence of phenolic compounds. One of the potential mechanisms involved is stimulation of endothelial nitric oxide (NO) production, as NO is a major regulator of vasodilatation. This study aimed to develop an in vitro assay using the hybrid human endothelial cell line EA.hy926 to rapidly screen phenolic compounds for their NO-stimulating potential. The assay was optimized, and a selection of 33 phenolics, namely, procyanidins, monomeric flavan-3-ols, flavonols, a flavone, a flavanone, a chalcone, a stilbene, and phenolic acids, was tested for their ability to enhance endothelial NO level. Resveratrol, a well-known enhancer of NO level, was included as a positive control. Of the 33 phenolics tested, only resveratrol (285% increase in NO level), quercetin (110% increase), epicatechingallate (ECg) (85% increase), and epigallocatechingallate (EGCg) (60% increase) were significant (P

Subject(s)
Endothelial Cells/chemistry , Endothelial Cells/drug effects , Nitric Oxide/analysis , Phenols/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line , Gene Expression/drug effects , Humans , Nitric Oxide Synthase Type III/genetics , Quercetin/pharmacology , Resveratrol , Stilbenes/pharmacology
7.
Br J Nutr ; 99(4): 703-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17868486

ABSTRACT

Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.


Subject(s)
Colonic Neoplasms/metabolism , Epithelial Cells/metabolism , Folic Acid/pharmacology , Vitamin B Complex/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Dietary Supplements , Epithelial Cells/drug effects , Epithelial Cells/pathology , Gene Expression Profiling , HT29 Cells , Humans , Iron/analysis , Iron/metabolism , Methionine/metabolism , Oligonucleotide Array Sequence Analysis , Tetrahydrofolates/metabolism , Vitamin B 12/metabolism , Vitamin B 12/pharmacology
8.
Arch Biochem Biophys ; 439(1): 32-41, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15950170

ABSTRACT

Although in vitro models are often used in beta-carotene research, knowledge about the uptake and metabolism of beta-carotene in cell lines is lacking. We measured by HPLC the intracellular levels of beta-carotene and its metabolites in 9 human intestinal and lung cell lines after exposure to 1 microM beta-carotene during 2, 6, 30, 54 h, and 3 weeks. In three colorectal carcinoma cell lines only low levels of beta-carotene could be detected and an apparent linear increase in intracellular beta-carotene was observed during the whole exposure period of 3 weeks. The remaining cell lines (an SV40 transformed colon cell line, a small intestinal carcinoma cell line and several lung cell lines) had medium or high intracellular beta-carotene levels. In these cell lines intracellular beta-carotene quickly increased during the first 54 h of exposure and after 3 weeks no further increase was observed, suggesting a stable level of beta-carotene after 54 h. Estimated intracellular concentrations at steady-state levels varied between 2 and 5 microM (low) or 9 and 55 microM (medium/high). Our results seem to indicate that an active uptake mechanism of beta-carotene exists in at least a subset of cell lines. Seven different beta-carotene metabolites were detected in the various cell lines (cis-carotene, retinol, three epoxy-carotenes, and two retinyl esters). Metabolite levels were the highest in cells with medium or high beta-carotene levels. Each cell line appeared to have a distinct metabolite profile. No intestinal or lung specific pattern could be found, but two epoxy-carotene metabolites were not detectable in the colon cell lines.


Subject(s)
Antioxidants/metabolism , Intestinal Mucosa/metabolism , Lung/metabolism , beta Carotene/metabolism , Antioxidants/pharmacology , Caco-2 Cells , Humans , Intestines/cytology , Lung/cytology , beta Carotene/pharmacology
9.
Br J Nutr ; 93(3): 393-402, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15877880

ABSTRACT

Enterolignans (enterodiol and enterolactone) can potentially reduce the risk of certain cancers and cardiovascular diseases. Enterolignans are formed by the intestinal microflora after the consumption of plant lignans. Until recently, only secoisolariciresinol and matairesinol were considered enterolignan precursors, but now several new precursors have been identified, of which lariciresinol and pinoresinol have a high degree of conversion. Quantitative data on the contents in foods of these new enterolignan precursors are not available. Thus, the aim of this study was to compile a lignan database including all four major enterolignan precursors. Liquid chromatography-tandem mass spectrometry was used to quantify lariciresinol, pinoresinol, secoisolariciresinol and matairesinol in eighty-three solid foods and twenty-six beverages commonly consumed in The Netherlands. The richest source of lignans was flaxseed (301,129 microg/100 g), which contained mainly secoisolariciresinol. Also, lignan concentrations in sesame seeds (29,331 microg/100 g, mainly pinoresinol and lariciresinol) were relatively high. For grain products, which are known to be important sources of lignan, lignan concentrations ranged from 7 to 764 microg/100 g. However, many vegetables and fruits had similar concentrations, because of the contribution of lariciresinol and pinoresinol. Brassica vegetables contained unexpectedly high levels of lignans (185-2321 microg/100 g), mainly pinoresinol and lariciresinol. Lignan levels in beverages varied from 0 (cola) to 91 microg/100 ml (red wine). Only four of the 109 foods did not contain a measurable amount of lignans, and in most cases the amount of lariciresinol and pinoresinol was larger than that of secoisolariciresinol and matairesinol. Thus, available databases largely underestimate the amount of enterolignan precursors in foods.


Subject(s)
Databases, Factual , Lignans/analysis , Plants, Edible/chemistry , Beverages/analysis , Butylene Glycols/analysis , Edible Grain/chemistry , Food Analysis/methods , Fruit/chemistry , Furans/analysis , Humans , Netherlands , Seeds/chemistry , Vegetables/chemistry
10.
J Agric Food Chem ; 52(15): 4643-51, 2004 Jul 28.
Article in English | MEDLINE | ID: mdl-15264894

ABSTRACT

A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of the four major enterolignan precursors [secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol] in foods. The method consists of alkaline methanolic extraction, followed by enzymatic hydrolysis using Helix pomatia (H. pomatia) beta-glucuronidase/sulfatase. H. pomatia was selected from several enzymes based on its ability to hydrolyze isolated lignan glucosides. After ether extraction samples were analyzed and quantified against secoisolariciresinol-d8 and matairesinol-d6. The method was optimized using model products: broccoli, bread, flaxseed, and tea. The yield of methanolic extraction increased up to 81%, when it was combined with alkaline hydrolysis. Detection limits were 4-10 microg/(100 g dry weight) for solid foods and 0.2-0.4 microg/(100 mL) for beverages. Within- and between-run coefficients of variation were 6-21 and 6-33%, respectively. Recovery of lignans added to model products was satisfactory (73-123%), except for matairesinol added to bread (51-55%).


Subject(s)
Chromatography, Liquid/methods , Food Analysis/methods , Lignans/analysis , Mass Spectrometry/methods , Plants/chemistry , Butylene Glycols/analysis , Furans/analysis , Hydrolysis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL