Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 17(9): 2404-2410, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36007246

ABSTRACT

Immunomodulatory imide drugs (IMiDs), such as thalidomide and its analogues, are some of the most commonly utilized E3 ligase ligands for the development of proteolysis targeting chimeras (PROTACs). While the canonical neo-substrates of IMiDs (i.e., Ikaros and Aiolos) are often considered to be unwanted targets of PROTACs, maintaining the degradation of these neo-substrates also provides the opportunity to synergistically degrade multiple proteins with a single compound. Here, we report the development of ALV-07-082-03, a CDK4/CDK6/Helios triple degrader that consists of palbociclib, an FDA-approved CDK4/6 inhibitor, conjugated to DKY709, a novel IMiD-based Helios degrader. Pharmacological codegradation of CDK4/6 and Helios resulted in potent suppression of downstream signaling and proliferation in cancer cells, as well as enhanced derepression of IL-2 secretion. Thus, not only do we demonstrate the possibility of rationally redirecting the neo-substrate specificity of PROTACs by incorporating alternative molecular glue molecules as E3 ligase ligands but our findings also suggest that cotargeting CDK4/6 and Helios may have synergistic effects.


Subject(s)
Chimera , Thalidomide , Adaptor Proteins, Signal Transducing/metabolism , Chimera/metabolism , Intercellular Signaling Peptides and Proteins , Interleukin-2/metabolism , Ligands , Proteolysis , Substrate Specificity , Thalidomide/pharmacology , Ubiquitin-Protein Ligases/metabolism
2.
Nat Chem Biol ; 17(6): 711-717, 2021 06.
Article in English | MEDLINE | ID: mdl-34035522

ABSTRACT

The zinc-finger transcription factor Helios is critical for maintaining the identity, anergic phenotype and suppressive activity of regulatory T (Treg) cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of Treg cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small-molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.


Subject(s)
DNA-Binding Proteins/drug effects , Ikaros Transcription Factor/drug effects , T-Lymphocytes, Regulatory/drug effects , Transcription Factors/drug effects , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , DNA-Binding Proteins/genetics , Humans , Ikaros Transcription Factor/genetics , Jurkat Cells , Mice , Models, Molecular , Molecular Structure , Mutation/genetics , Small Molecule Libraries , Substrate Specificity , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Isr J Chem ; 57(3-4): 279-291, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29104308

ABSTRACT

Spiroketals are key structural motifs found in diverse natural products with compelling biological activities. However, stereocontrolled synthetic access to spiroketals, independent of their inherent thermodynamic preferences, is a classical challenge in organic synthesis that has limited in-depth biological exploration of this intriguing class. Herein, we review our laboratory's efforts to advance the glycal epoxide approach to the stereocontrolled synthesis of spiroketals via kinetically controlled spirocyclization reactions. This work has provided new synthetic methodologies with applications in both diversity- and target-oriented synthesis, fundamental insights into structure and reactivity, and efficient access to spiroketal libraries and natural products for biological evaluation.

4.
Chem Sci ; 8(5): 3687-3693, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28845229

ABSTRACT

The pyranose spiroketal natural products pollenopyrroside A and shensongine A (also known as xylapyrroside A, ent-capparisine B) have been synthesized by stereoselective spirocyclizations of a common C1-functionalized glycal precursor. In conjunction with our previously reported syntheses of the corresponding furanose isomers, this provides a versatile family-level synthesis of the pyrrolomorpholine spiroketal natural products and analogues. In rat mesangial cells, hyperglycemia-induced production of reactive oxygen species, which is implicated in diabetic nephropathy, was inhibited by pollenopyrroside A and shensongine A with mid-µM IC50 values, while unnatural C2-hydroxy analogues exhibited more potent, sub-µM activity.

5.
Org Lett ; 14(17): 4442-5, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22924668

ABSTRACT

Acortatarins A and B have been synthesized via stereoselective spirocyclizations of glycals. Mercury-mediated spirocyclization of a pyrrole monoalcohol side chain leads to acortatarin A. Glycal epoxidation and reductive spirocyclization of a pyrrole dialdehyde side chain leads to acortatarin B. Acid equilibration and crystallographic analysis indicate that acortatarin B is a contrathermodynamic spiroketal with distinct ring conformations compared to acortatarin A.


Subject(s)
Acorus/chemistry , Alkaloids/chemical synthesis , Morpholines/chemical synthesis , Pyrroles/chemical synthesis , Spiro Compounds/chemical synthesis , Alkaloids/chemistry , Catalysis , Mercury/chemistry , Molecular Structure , Morpholines/chemistry , Plant Roots/chemistry , Pyrroles/chemistry , Spiro Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL