Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
2.
Proc Natl Acad Sci U S A ; 120(51): e2306767120, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38100415

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterized by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here, we used electron cryo-microscopy to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. We identified a new Type III CTE tau filament, where protofilaments pack against each other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.


Amyotrophic Lateral Sclerosis , Chronic Traumatic Encephalopathy , Dementia , Neurodegenerative Diseases , Parkinsonian Disorders , Tauopathies , Humans , Amyotrophic Lateral Sclerosis/complications , Dementia/etiology , Parkinsonian Disorders/complications , Japan , tau Proteins
3.
Nat Commun ; 14(1): 5922, 2023 09 22.
Article En | MEDLINE | ID: mdl-37739965

Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-ß (Aß) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aß peptides, and Aß build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.


Alzheimer Disease , Humans , Alzheimer Disease/genetics , Signal Transduction , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Cell Culture Techniques, Three Dimensional
4.
bioRxiv ; 2023 Apr 28.
Article En | MEDLINE | ID: mdl-37162924

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterised by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in two Kii cases. We also identified a novel Type III CTE tau filament, where protofilaments pack against each other in an anti-parallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.

5.
Nat Commun ; 14(1): 1547, 2023 03 20.
Article En | MEDLINE | ID: mdl-36941254

Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.


RNA Polymerase II , Transcription, Genetic , Animals , Humans , Mice , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
Proc Natl Acad Sci U S A ; 120(5): e2210038120, 2023 01 31.
Article En | MEDLINE | ID: mdl-36696440

To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer's disease.


RNA , Transcription, Genetic , Animals , Mice , Humans , RNA/genetics , Transcriptome , Proteins/genetics , Repetitive Sequences, Nucleic Acid
7.
ACS Omega ; 6(51): 35375-35388, 2021 Dec 28.
Article En | MEDLINE | ID: mdl-34984269

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by loss of motor neurons (MN) in the spinal cord leading to progressive muscle atrophy and weakness. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene, resulting in reduced levels of survival motor neuron (SMN) protein. The mechanisms that link SMN deficiency to selective motor neuron dysfunction in SMA remain largely unknown. We present here, for the first time, a comprehensive quantitative TMT-10plex proteomics analysis that covers the development of induced pluripotent stem cell-derived MNs from both healthy individuals and SMA patients. We show that the proteomes of SMA samples segregate from controls already at early stages of neuronal differentiation. The altered proteomic signature in SMA MNs is associated with mRNA splicing, ribonucleoprotein biogenesis, organelle organization, cellular biogenesis, and metabolic processes. We highlight several known SMN-binding partners and evaluate their expression changes during MN differentiation. In addition, we compared our study to human and mouse in vivo proteomic studies revealing distinct and similar signatures. Altogether, our work provides a comprehensive resource of molecular events during early stages of MN differentiation, containing potentially therapeutically interesting protein expression profiles for SMA.

8.
J Neuropathol Exp Neurol ; 79(8): 902-907, 2020 08 01.
Article En | MEDLINE | ID: mdl-32647880

Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) is a progressive neurodegenerative disorder that is endemic to the Kii peninsula of Japan. The disorder is clinically characterized by a variable combination of parkinsonism, dementia, and motor neuron symptoms. Despite extensive investigations, the etiology and pathogenesis of ALS/PDC remain unclear. At the neuropathological level, Kii ALS/PDC is characterized by neuronal loss and tau-dominant polyproteinopathy. Here, we report the accumulation of several proteins involved in protein homeostasis pathways, that is, the ubiquitin-proteasome system and the autophagy-lysosome pathway, in postmortem brain tissue from a number of Kii ALS/PDC cases (n = 4). Of particular interest is the presence of a mutant ubiquitin protein (UBB+1), which is indicative of disrupted ubiquitin homeostasis. The findings suggest that abnormal protein aggregation is linked to impaired protein homeostasis pathways in Kii ALS/PDC.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Brain/pathology , Ubiquitin/genetics , Brain/metabolism , Frameshift Mutation , Humans , Japan , Proteostasis/genetics , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
9.
Acta Neuropathol ; 140(3): 415, 2020 09.
Article En | MEDLINE | ID: mdl-32632518

In the original article, the panels "Brain organoids" and "Transgenics" were included in Fig. 5 without permission.

10.
J Proteome Res ; 19(6): 2391-2403, 2020 06 05.
Article En | MEDLINE | ID: mdl-32357013

Neuronal development is a complex multistep process that shapes neurons by progressing though several typical stages, including axon outgrowth, dendrite formation, and synaptogenesis. Knowledge of the mechanisms of neuronal development is mostly derived from the study of animal models. Advances in stem cell technology now enable us to generate neurons from human induced pluripotent stem cells (iPSCs). Here we provide a mass spectrometry-based quantitative proteomic signature of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic neurons and iPSC-derived motor neurons, throughout neuronal differentiation. Tandem mass tag 10-plex labeling was carried out to perform proteomic profiling of cells at different time points. Our analysis reveals significant expression changes (FDR < 0.001) of several key proteins during the differentiation process, e.g., proteins involved in the Wnt and Notch signaling pathways. Overall, our data provide a rich resource of information on protein expression during human iPSC neuron differentiation.


Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Neurogenesis , Proteome/genetics , Proteomics
11.
Noncoding RNA ; 6(2)2020 May 18.
Article En | MEDLINE | ID: mdl-32443580

Long non-coding RNAs (lncRNAs) are a diverse class of transcripts that are >200 nucleotides long and lack significant protein-coding potential. LncRNAs are emerging as major regulators of gene expression networks in various physiological and pathological processes. Interestingly, many lncRNAs show tissue-specific expression, for example, in the nervous system. Although lncRNAs have been suggested to play key roles in the brain, most functions of neural lncRNAs remain poorly understood. In order to provide a catalog of lncRNA changes that occur in spinal cord during early postnatal development, RNA from mouse spinal cord was sequenced at different time points in the first week after birth (postnatal day 1 and postnatal day 7). Two hundred and ninty-six differentially expressed lncRNAs (FDR < 0.05) were identified in the resulting dataset. Altered transcripts were associated with several biological processes including myelination, neural differentiation, and glial cell development. PCR validation confirmed differential expression of select lncRNAs (i.e., Cerox1, lncOL3, Neat1, and Sox2ot). Additionally, analysis of circular RNAs (circRNAs), another class of non-coding RNA with regulatory potency, pointed out a number of circRNAs associated with spinal cord development. These data can be used as a resource for future studies on transcriptional changes during early postnatal nervous system development and studies of disorders that affect the spinal cord, e.g., spinal muscular atrophy.

12.
J Neuropathol Exp Neurol ; 79(1): 34-45, 2020 01 01.
Article En | MEDLINE | ID: mdl-31750913

Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.


Amyotrophic Lateral Sclerosis/pathology , Proteostasis Deficiencies/pathology , Unfolded Protein Response , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Autophagy , Brain/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress , Female , Humans , Male , Middle Aged , Mutation/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteostasis Deficiencies/genetics , Signal Transduction/genetics , Ubiquitin/genetics , Ubiquitin/metabolism
13.
Front Mol Neurosci ; 12: 277, 2019.
Article En | MEDLINE | ID: mdl-31798412

The brain is a genomic mosaic. Cell-to-cell genomic differences, which are the result of somatic mutations during development and aging, contribute to cellular diversity in the nervous system. This genomic diversity has important implications for nervous system development, function, and disease. Brain somatic mosaicism might contribute to individualized behavioral phenotypes and has been associated with several neuropsychiatric and neurodegenerative disorders. Therefore, understanding the causes and consequences of somatic mosaicism in neural circuits is of great interest. Recent advances in 3D cell culture technology have provided new means to study human organ development and various human pathologies in vitro. Cerebral organoids ("mini-brains") are pluripotent stem cell-derived 3D culture systems that recapitulate, to some extent, the developmental processes and organization of the developing human brain. Here, I discuss the application of these neural organoids for modeling brain somatic mosaicism in a lab dish. Special emphasis is given to the potential role of microglial mutations in the pathogenesis of neurodegenerative diseases.

15.
Neurobiol Aging ; 72: 62-71, 2018 12.
Article En | MEDLINE | ID: mdl-30216939

Amyloid-ß (Aß) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aß peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aß-associated factors. Efficient clearance of Aß from the brain is thought to be important to prevent the development and progression of AD. The ubiquitin-proteasome system (UPS) is one of the major pathways for protein breakdown in cells and it has been suggested that impaired UPS-mediated removal of protein aggregates could play an important role in the pathogenesis of AD. To study the effects of an impaired UPS on Aß pathology in vivo, transgenic APPSwe/PS1ΔE9 mice (APPPS1) were crossed with transgenic mice expressing mutant ubiquitin (UBB+1), a protein-based inhibitor of the UPS. Surprisingly, the APPPS1/UBB+1 crossbreed showed a remarkable decrease in Aß plaque load during aging. Further analysis showed that UBB+1 expression transiently restored PS1-NTF expression and γ-secretase activity in APPPS1 mice. Concurrently, UBB+1 decreased levels of ß-APP-CTF, which is a γ-secretase substrate. Although UBB+1 reduced Aß pathology in APPPS1 mice, it did not improve the behavioral deficits in these animals.


Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Behavior, Animal , Plaque, Amyloid/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Mice , Mice, Transgenic
16.
Front Neurol ; 9: 173, 2018.
Article En | MEDLINE | ID: mdl-29615966

Guam parkinsonism-dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.

17.
Microb Cell ; 5(4): 212-214, 2018 Mar 21.
Article En | MEDLINE | ID: mdl-29611555

The accumulation of protein aggregates in neurons is a typical pathological hallmark of the motor neuron disease amyotrophic lateral sclerosis (ALS) and of frontotemporal dementia (FTD). In many cases, these aggregates are composed of the 43 kDa TAR DNA-binding protein (TDP 43). Using a yeast model for TDP 43 proteinopathies, we observed that the vacuole (the yeast equivalent of lysosomes) markedly contributed to the degradation of TDP 43. This clearance occurred via TDP 43-containing vesicles fusing with the vacuole through the concerted action of the endosomal-vacuolar (or endolysosomal) pathway and autophagy. In line with its dominant role in the clearance of TDP 43, endosomal-vacuolar pathway activity protected cells from the detrimental effects of TDP 43. In contrast, enhanced autophagy contributed to TDP 43 cytotoxicity, despite being involved in TDP 43 degradation. TDP 43's interference with endosomal-vacuolar pathway activity may have two deleterious consequences. First, it interferes with its own degradation via this pathway, resulting in TDP 43 accumulation. Second, it affects vacuolar proteolytic activity, which requires endosomal-vacuolar trafficking. We speculate that the latter contributes to aberrant autophagy. In sum, we propose that ameliorating endolysosomal pathway activity enhances cell survival in TDP 43-associated diseases.

18.
Acta Neuropathol ; 135(6): 811-826, 2018 06.
Article En | MEDLINE | ID: mdl-29705908

The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.


Aging/genetics , Mutation , Nerve Degeneration/genetics , Neurodegenerative Diseases/genetics , Animals , Humans
19.
Hum Mol Genet ; 27(9): 1593-1607, 2018 05 01.
Article En | MEDLINE | ID: mdl-29474575

TDP-43 is a nuclear RNA-binding protein whose cytoplasmic accumulation is the pathological hallmark of amyotrophic lateral sclerosis (ALS). For a better understanding of this devastating disorder at the molecular level, it is important to identify cellular pathways involved in the clearance of detrimental TDP-43. Using a yeast model system, we systematically analyzed to which extent TDP-43-triggered cytotoxicity is modulated by conserved lysosomal clearance pathways. We observed that the lysosomal fusion machinery and the endolysosomal pathway, which are crucial for proper lysosomal function, were pivotal for survival of cells exposed to TDP-43. Interestingly, TDP-43 itself interfered with these critical TDP-43 clearance pathways. In contrast, autophagy played a complex role in this process. It contributed to the degradation of TDP-43 in the absence of endolysosomal pathway activity, but its induction also enhanced cell death. Thus, TDP-43 interfered with lysosomal function and its own degradation via lysosomal pathways, and triggered lethal autophagy. We propose that these effects critically contribute to cellular dysfunction in TDP-43 proteinopathies.


Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Lysosomes/metabolism , Autophagy/physiology
...