Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1122031, 2023.
Article in English | MEDLINE | ID: mdl-36992834

ABSTRACT

Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERß), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERß ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.

2.
Front Pharmacol ; 13: 1017690, 2022.
Article in English | MEDLINE | ID: mdl-36210845

ABSTRACT

Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.

3.
Cells ; 11(14)2022 07 11.
Article in English | MEDLINE | ID: mdl-35883605

ABSTRACT

Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.


Subject(s)
Acute-Phase Proteins , Diabetes Mellitus, Type 2 , Insulin Resistance , Acute-Phase Proteins/metabolism , C-Reactive Protein/analysis , Diabetes Mellitus, Type 2/metabolism , Humans , Inflammation/metabolism , Plasminogen Activator Inhibitor 1 , Serum Amyloid A Protein , Stress, Physiological
4.
Biochem Biophys Res Commun ; 602: 113-119, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35263658

ABSTRACT

Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.


Subject(s)
Fibroblasts , Receptors, Glucocorticoid , Animals , Down-Regulation , Fibroblasts/metabolism , Glucocorticoids/pharmacology , Ligands , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
5.
J Biol Chem ; 298(2): 101574, 2022 02.
Article in English | MEDLINE | ID: mdl-35007536

ABSTRACT

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Subject(s)
Dexamethasone , Point Mutation , Receptors, Glucocorticoid , Animals , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Ligands , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
6.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34685511

ABSTRACT

For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.


Subject(s)
Glucocorticoids/metabolism , Metabolism, Inborn Errors/genetics , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/metabolism , Down-Regulation/drug effects , Glucocorticoids/pharmacology , Humans , RNA, Messenger/genetics , Receptors, Glucocorticoid/genetics
7.
Endocr Connect ; 7(12): R328-R349, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30352419

ABSTRACT

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.

8.
PLoS One ; 9(5): e96497, 2014.
Article in English | MEDLINE | ID: mdl-24840644

ABSTRACT

Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼ 24 nM for transactivation of the anti-inflammatory GILZ gene and ∼ 4-20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.


Subject(s)
Contraceptive Agents/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Medroxyprogesterone Acetate/pharmacology , Norethindrone/analogs & derivatives , Progesterone/pharmacology , Receptors, Glucocorticoid/metabolism , Cells, Cultured , Cervix Uteri/cytology , Epithelial Cells/immunology , Female , HeLa Cells , Humans , Injections , Medroxyprogesterone Acetate/administration & dosage , Norethindrone/administration & dosage , Norethindrone/pharmacology , Norethindrone Acetate , Progesterone/administration & dosage
9.
J Biol Chem ; 286(22): 19297-310, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21474440

ABSTRACT

TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation , Interleukin-6/biosynthesis , Receptors, Glucocorticoid/metabolism , Transcription, Genetic , Tumor Necrosis Factor-alpha/metabolism , Animals , COS Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chlorocebus aethiops , Hormone Antagonists/pharmacology , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/genetics , Mifepristone/pharmacology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Promoter Regions, Genetic , Receptors, Glucocorticoid/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
10.
J Agric Food Chem ; 55(11): 4371-81, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17461595

ABSTRACT

Unfermented C. genistoides methanol extracts of different harvestings and selected polyphenols were evaluated for phytoestrogenic activity by comparing binding to both ER subtypes, transactivation of an ERE-containing promoter reporter, proliferation of MCF-7-BUS and MDA-MB-231 breast cancer cells, and binding to SHBG. The extracts from one harvesting of C. genistoides (P104) bound to both ER subtypes. All extracts transactivated ERE-containing promoter reporters via ERbeta but not via ERalpha. All extracts, except P122, caused proliferation of the estrogen-sensitive MCF-7-BUS cells. Proliferation of MCF-7-BUS cells was ER-dependent as ICI 182,780 reversed proliferation. Physiologically more relevant, extracts antagonized E2-induced MCF-7-BUS cell proliferation. Furthermore, all extracts, except P122, induced proliferation of the estrogen-insensitive MDA-MB-231 cells, suggesting that the extracts are able to induce ER-dependent and ER-independent cell proliferation. Binding to SHBG by extracts was also demonstrated. These results clearly show that C. genistoides methanol extracts display phytoestrogenic activity and act predominantly via ERbeta. HPLC and LC-MS analysis, however, suggests that the observed phytoestrogenic activity cannot be ascribed to polyphenols known to be present in other Cyclopia species.


Subject(s)
Fabaceae/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Estrogen Receptor alpha/physiology , Estrogen Receptor beta/physiology , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...