Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 43(10): 2062-2085, 2024 May.
Article in English | MEDLINE | ID: mdl-38600243

ABSTRACT

The γ-tubulin ring complex (γ-TuRC) is a structural template for de novo microtubule assembly from α/ß-tubulin units. The isolated vertebrate γ-TuRC assumes an asymmetric, open structure deviating from microtubule geometry, suggesting that γ-TuRC closure may underlie regulation of microtubule nucleation. Here, we isolate native γ-TuRC-capped microtubules from Xenopus laevis egg extract nucleated through the RanGTP-induced pathway for spindle assembly and determine their cryo-EM structure. Intriguingly, the microtubule minus end-bound γ-TuRC is only partially closed and consequently, the emanating microtubule is locally misaligned with the γ-TuRC and asymmetric. In the partially closed conformation of the γ-TuRC, the actin-containing lumenal bridge is locally destabilised, suggesting lumenal bridge modulation in microtubule nucleation. The microtubule-binding protein CAMSAP2 specifically binds the minus end of γ-TuRC-capped microtubules, indicating that the asymmetric minus end structure may underlie recruitment of microtubule-modulating factors for γ-TuRC release. Collectively, we reveal a surprisingly asymmetric microtubule minus end protofilament organisation diverging from the regular microtubule structure, with direct implications for the kinetics and regulation of nucleation and subsequent modulation of microtubules during spindle assembly.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Tubulin , Xenopus Proteins , Xenopus laevis , ran GTP-Binding Protein , Microtubules/metabolism , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/genetics , Tubulin/metabolism , Tubulin/chemistry , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Cryoelectron Microscopy , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL