Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 1(4): 15034, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-27247034

ABSTRACT

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security(1,2). All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors(3). However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors(4). Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.


Subject(s)
Phytophthora infestans/pathogenicity , Plant Proteins/immunology , Proteins/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Disease Resistance , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Pathogen-Associated Molecular Pattern Molecules , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Solanum tuberosum/genetics
2.
Plant Methods ; 9(1): 37, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24099459

ABSTRACT

BACKGROUND: Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes. RESULTS: In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH. Positions of RGAs in the potato RH and DM genomes that were generated using profiling and genome sequencing, respectively, were compared. Largely overlapping results, but also interesting discrepancies, were found. Due to the clustering of RGAs, several parts of the genome are overexposed while others remain underexposed using NBS profiling. It is shown how the profiling of other gene families, i.e. protein kinases and different protein domain-coding sequences (i.e., TIR), can be used to achieve a better marker distribution. The power of profiling techniques is further illustrated using RGA cluster-directed profiling in a population of Solanum berthaultii. Multiple different paralogous RGAs within the Rpi-ber cluster could be genetically distinguished. Finally, an adaptation of the profiling protocol was made that allowed the parallel sequencing of profiling fragments using next generation sequencing. The types of RGAs that were tagged in this next-generation profiling approach largely overlapped with classical gel-based profiling. As a potential application of next-generation profiling, we showed how the R gene family associated with late blight resistance in the SH*RH population could be identified using a bulked segregant approach. CONCLUSIONS: In this study, we provide a comprehensive overview of previously described and novel profiling primers and their genomic targets in potato through genetic mapping and comparative genomics. Furthermore, it is shown how genome-wide or fine mapping can be pursued by choosing different sets of profiling primers. A protocol for next-generation profiling is provided and will form the basis for novel applications. Using the current overview of genomic targets, a rational choice can be made for profiling primers to be employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...