Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Diabetes ; 73(4): 585-591, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211571

ABSTRACT

Glucolipotoxicity (GLT), in which elevated levels of glucose and fatty acids have deleterious effects on ß-cell biology, is thought to be one of the major contributors in progression of type 2 diabetes. In search of novel small molecules that protect ß-cells against GLT, we previously discovered KD025, an inhibitor of Rho-associated coiled-coil-containing kinase isoform 2 (ROCK2), as a GLT-protective compound in INS-1E cells and dissociated human islets. To further understand the mechanism of action of KD025, we found that pharmacological and genetic inhibition of ROCK2 was not responsible for the protective effects of KD025 against GLT. Instead, kinase profiling revealed that KD025 potently inhibits catalytic subunits of casein kinase 2 (CK2), a constitutively active serine/threonine kinase. We experimentally verified that the inhibition of one of the catalytic subunits of casein kinase 2, CK2A1, but not CK2A2, improved cell viability when challenged with GLT. We conclude that KD025 inhibits CK2 to protect ß-cells from GLT.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Casein Kinase II/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology
2.
Cell Metab ; 35(7): 1242-1260.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37339634

ABSTRACT

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing ß cells. Thus, the identification of ß cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human ß cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates ß cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts ß cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent ß cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-ß cell crosstalk that acts to limit ß cell viability, leading to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Mice , Animals , Acinar Cells/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Elastase/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Cell Communication
3.
J Am Chem Soc ; 142(14): 6477-6482, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32175731

ABSTRACT

The loss of insulin-producing ß-cells is the central pathological event in type 1 and 2 diabetes, which has led to efforts to identify molecules to promote ß-cell proliferation, protection, and imaging. However, the lack of ß-cell specificity of these molecules jeopardizes their therapeutic potential. A general platform for selective release of small-molecule cargoes in ß-cells over other islet cells ex vivo or other cell-types in an organismal context will be immensely valuable in advancing diabetes research and therapeutic development. Here, we leverage the unusually high Zn(II) concentration in ß-cells to develop a Zn(II)-based prodrug system to selectively and tracelessly deliver bioactive small molecules and fluorophores to ß-cells. The Zn(II)-targeting mechanism enriches the inactive cargo in ß-cells as compared to other pancreatic cells; importantly, Zn(II)-mediated hydrolysis triggers cargo activation. This prodrug system, with modular components that allow for fine-tuning selectivity, should enable the safer and more effective targeting of ß-cells.


Subject(s)
B-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Zinc/therapeutic use , Catalysis , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Humans
4.
Nat Chem Biol ; 15(6): 565-574, 2019 06.
Article in English | MEDLINE | ID: mdl-31086331

ABSTRACT

Enzymes that act on multiple substrates are common in biology but pose unique challenges as therapeutic targets. The metalloprotease insulin-degrading enzyme (IDE) modulates blood glucose levels by cleaving insulin, a hormone that promotes glucose clearance. However, IDE also degrades glucagon, a hormone that elevates glucose levels and opposes the effect of insulin. IDE inhibitors to treat diabetes, therefore, should prevent IDE-mediated insulin degradation, but not glucagon degradation, in contrast with traditional modes of enzyme inhibition. Using a high-throughput screen for non-active-site ligands, we discovered potent and highly specific small-molecule inhibitors that alter IDE's substrate selectivity. X-ray co-crystal structures, including an IDE-ligand-glucagon ternary complex, revealed substrate-dependent interactions that enable these inhibitors to potently block insulin binding while allowing glucagon cleavage, even at saturating inhibitor concentrations. These findings suggest a path for developing IDE-targeting therapeutics, and offer a blueprint for modulating other enzymes in a substrate-selective manner to unlock their therapeutic potential.


Subject(s)
Enzyme Inhibitors/pharmacology , Insulin/metabolism , Metalloproteases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Enzyme Inhibitors/chemistry , Humans , Metalloproteases/metabolism , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemistry , Substrate Specificity
5.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051099

ABSTRACT

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Subject(s)
CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Cas Systems/physiology , High-Throughput Screening Assays/methods , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , DNA/metabolism , Endonucleases/metabolism , Gene Editing/methods , Genome , Small Molecule Libraries , Streptococcus pyogenes/genetics , Substrate Specificity
6.
Cell Chem Biol ; 26(5): 711-723.e14, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30880155

ABSTRACT

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lactams/pharmacology , Polycyclic Compounds/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/metabolism , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line , Dimerization , Disease Models, Animal , Humans , Lactams/chemical synthesis , Lactams/therapeutic use , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/drug therapy , Polycyclic Compounds/chemical synthesis , Polycyclic Compounds/therapeutic use , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , Rats , Repressor Proteins/chemistry , Repressor Proteins/genetics , Small Molecule Libraries/therapeutic use , Ultraviolet Rays
7.
Proc Natl Acad Sci U S A ; 114(20): E4030-E4039, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461505

ABSTRACT

Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.


Subject(s)
Down Syndrome/complications , Janus Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , STAT Transcription Factors/metabolism , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Female , Humans , Male , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Cytokine/genetics , Recurrence , Signal Transduction , Ubiquitin Thiolesterase/genetics , Young Adult
8.
Cell Syst ; 3(4): 346-360.e4, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27667365

ABSTRACT

Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.


Subject(s)
Transcriptome , Animals , Cell Differentiation , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Islets of Langerhans , Mice , Pancreas , Pancreas, Exocrine , Single-Cell Analysis , Transcription Factors
9.
Methods Mol Biol ; 1483: 339-63, 2016.
Article in English | MEDLINE | ID: mdl-27645744

ABSTRACT

CE applications to charged polysaccharides are briefly reported. A simple procedure is presented to determine the esterification degree of a hyaluronan derivative. In this case the degree of substitution was as low as 14 %.The molecular weight distribution of mannuronic oligosaccharides mixture produced by hydrolysis of native polymannuronic is readily calculated from peak area of the species resolved by CE on the basis of a specific degree of polymerization.The influence of the applied electric field strength on the free solution mobility of hyaluronan samples is briefly addressed for molar masses of the order of 10(5) and 10(6) g/mol. The data are compared with the results obtained for a 50 % galactose substituted HA.Mobility data obtained as a function of buffer pH for a native HA sample as well as for two galactose-amide HA derivatives, having slightly different degrees of substitution, are presented and discussed in terms of the polymer charge density parameters ξ.In most cases, more questions than answers arise from the application of CE to charged polysaccharides. However, perspectives are disclosed for a further understanding of the reliability of CE applied for the structural elucidation of such macromolecules.


Subject(s)
Dietary Carbohydrates/isolation & purification , Electrophoresis, Capillary/methods , Hyaluronic Acid/isolation & purification , Polysaccharides/isolation & purification , Esterification , Hyaluronic Acid/chemistry , Molecular Weight , Polysaccharides/chemistry
10.
Stem Cells Transl Med ; 5(11): 1525-1537, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27405779

ABSTRACT

: ß-Cell replacement therapy represents the most promising approach to restore ß-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of ß-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce ß-cell differentiation of HDDCs, which acquired a broad repertoire of mature ß-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived ß cells (called ß-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of ß-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with potential to reverse diabetes. SIGNIFICANCE: ß-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of ß-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce ß-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with the potential to reverse diabetes.

11.
ACS Chem Biol ; 11(7): 1844-51, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27064299

ABSTRACT

Unbiased binding assays involving small-molecule microarrays were used to identify compounds that display unique patterns of selectivity among members of the zinc-dependent histone deacetylase family of enzymes. A novel, hydroxyquinoline-containing compound, BRD4354, was shown to preferentially inhibit activity of HDAC5 and HDAC9 in vitro. Inhibition of deacetylase activity appears to be time-dependent and reversible. Mechanistic studies suggest that the compound undergoes zinc-catalyzed decomposition to an ortho-quinone methide, which covalently modifies nucleophilic cysteines within the proteins. The covalent nature of the compound-enzyme interaction has been demonstrated in experiments with biotinylated probe compound and with electrospray ionization-mass spectrometry.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Animals , Cell Line , Humans
12.
Diabetes ; 65(6): 1660-71, 2016 06.
Article in English | MEDLINE | ID: mdl-26953159

ABSTRACT

Restoring functional ß-cell mass is an important therapeutic goal for both type 1 and type 2 diabetes (1). While proliferation of existing ß-cells is the primary means of ß-cell replacement in rodents (2), it is unclear whether a similar principle applies to humans, as human ß-cells are remarkably resistant to stimulation of division (3,4). Here, we show that 5-iodotubercidin (5-IT), an annotated adenosine kinase inhibitor previously reported to increase proliferation in rodent and porcine islets (5), strongly and selectively increases human ß-cell proliferation in vitro and in vivo. Remarkably, 5-IT also increased glucose-dependent insulin secretion after prolonged treatment. Kinome profiling revealed 5-IT to be a potent and selective inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) and cell division cycle-like kinase families. Induction of ß-cell proliferation by either 5-IT or harmine, another natural product DYRK1A inhibitor, was suppressed by coincubation with the calcineurin inhibitor FK506, suggesting involvement of DYRK1A and nuclear factor of activated T cells signaling. Gene expression profiling in whole islets treated with 5-IT revealed induction of proliferation- and cell cycle-related genes, suggesting that true proliferation is induced by 5-IT. Furthermore, 5-IT promotes ß-cell proliferation in human islets grafted under the kidney capsule of NOD-scid IL2Rg(null) mice. These results point to inhibition of DYRK1A as a therapeutic strategy to increase human ß-cell proliferation.


Subject(s)
Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Insulin-Secreting Cells/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Tubercidin/analogs & derivatives , Animals , Cell Proliferation/genetics , Gene Expression Profiling , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred NOD , Phosphorylation/drug effects , Tubercidin/pharmacology , Dyrk Kinases
13.
ACS Chem Biol ; 11(2): 363-74, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26640968

ABSTRACT

Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in ß-cell pathobiology and demonstrate for the first time that selective inhibition of an individual HDAC isoform retains beneficial biological activity and mitigates mechanism-based toxicities. The highly selective HDAC3 inhibitor BRD3308 suppressed pancreatic ß-cell apoptosis induced by inflammatory cytokines, as expected, or now glucolipotoxic stress, and increased functional insulin release. In addition, BRD3308 had no effect on human megakaryocyte differentiation, while inhibitors of HDAC1 and 2 were toxic. Our findings demonstrate that the selective inhibition of HDAC3 represents a potential path forward as a therapy to protect pancreatic ß-cells from inflammatory cytokines and nutrient overload in diabetes.


Subject(s)
Cytoprotection/drug effects , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Insulin-Secreting Cells/drug effects , Amino Acid Sequence , Animals , Apoptosis/drug effects , Cell Line , Drug Design , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Humans , Insulin-Secreting Cells/cytology , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Rats
14.
J Am Chem Soc ; 137(24): 7929-34, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26042473

ABSTRACT

Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic ß-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote ß-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat ß cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.


Subject(s)
Insulin-Secreting Cells/drug effects , Interferon-gamma/immunology , Janus Kinase 2/immunology , Protective Agents/chemistry , Protective Agents/pharmacology , STAT1 Transcription Factor/immunology , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/immunology , Phosphorylation/drug effects , Rats , Signal Transduction/drug effects , Ubiquitin Thiolesterase/immunology , Ubiquitination/drug effects
15.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25660025

ABSTRACT

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

16.
Cell Metab ; 21(1): 126-37, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25565210

ABSTRACT

Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes.


Subject(s)
Fatty Acids/pharmacology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Cells, Cultured , Cytokines/pharmacology , Enzyme-Linked Immunosorbent Assay , Genes, Reporter , Glucose/pharmacology , High-Throughput Screening Assays , Humans , Insulin/genetics , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Luciferases/genetics , Luciferases/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Thapsigargin/toxicity
17.
Nat Rev Drug Discov ; 13(4): 278-89, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24525781

ABSTRACT

Diabetes is a leading cause of morbidity and mortality worldwide, and predicted to affect over 500 million people by 2030. However, this growing burden of disease has not been met with a comparable expansion in therapeutic options. The appreciation of the pancreatic ß-cell as a central player in the pathogenesis of both type 1 and type 2 diabetes has renewed focus on ways to improve glucose homeostasis by preserving, expanding and improving the function of this key cell type. Here, we provide an overview of the latest developments in this field, with an emphasis on the most promising strategies identified to date for treating diabetes by targeting the ß-cell.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Drug Design , Humans , Insulin-Secreting Cells/metabolism , Molecular Targeted Therapy
18.
Int J Endocrinol ; 2012: 925143, 2012.
Article in English | MEDLINE | ID: mdl-22811709

ABSTRACT

Pancreatic beta-cell regeneration, for example, by inducing proliferation, remains an important goal in developing effective treatments for diabetes. However, beta cells have mainly been considered quiescent. This "static" view has recently been challenged by observations of relevant physiological conditions in which metabolic stress is compensated by an increase in beta-cell mass. Understanding the molecular mechanisms underlining these process could open the possibility of developing novel small molecules to increase beta-cell mass. Several cellular cell-cycle and signaling proteins provide attractive targets for high throughput screening, and recent advances in cell culture have enabled phenotypic screening for small molecule-induced beta-cell proliferation. We present here an overview of the current trends involving small-molecule approaches to induce beta-cell regeneration by proliferation.

19.
PLoS One ; 7(1): e28808, 2012.
Article in English | MEDLINE | ID: mdl-22242153

ABSTRACT

BACKGROUND: Expression of insulin in terminally differentiated non-beta cell types in the pancreas could be important to treating type-1 diabetes. Previous findings led us to hypothesize involvement of kinase inhibition in induction of insulin expression in pancreatic alpha cells. METHODOLOGY/PRINCIPAL FINDINGS: Alpha (αTC1.6) cells and human islets were treated with GW8510 and other small-molecule inhibitors for up to 5 days. Alpha cells were assessed for gene- and protein-expression levels, cell-cycle status, promoter occupancy status by chromatin immunoprecipitation (ChIP), and p53-dependent transcriptional activity. GW8510, a putative CDK2 inhibitor, up-regulated insulin expression in mouse alpha cells and enhanced insulin secretion in dissociated human islets. Gene-expression profiling and gene-set enrichment analysis of GW8510-treated alpha cells suggested up-regulation of the p53 pathway. Accordingly, the compound increased p53 transcriptional activity and expression levels of p53 transcriptional targets. A predicted p53 response element in the promoter region of the mouse Ins2 gene was verified by chromatin immunoprecipitation (ChIP). Further, inhibition of Jun N-terminal kinase (JNK) and p38 kinase activities suppressed insulin induction by GW8510. CONCLUSIONS/SIGNIFICANCE: The induction of Ins2 by GW8510 occurred through p53 in a JNK- and p38-dependent manner. These results implicate p53 activity in modulation of Ins2 expression levels in pancreatic alpha cells, and point to a potential approach toward using small molecules to generate insulin in an alternative cell type.


Subject(s)
Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Indoles/pharmacology , Insulin/metabolism , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects , Tumor Suppressor Protein p53/genetics , Animals , Cell Cycle/drug effects , Cell Line , Glucagon-Secreting Cells/cytology , Humans , Mice , Middle Aged , Models, Biological , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Response Elements/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptional Activation/genetics
20.
J Biomol Screen ; 17(4): 509-18, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22156222

ABSTRACT

A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.


Subject(s)
High-Throughput Screening Assays/methods , Islets of Langerhans/cytology , Primary Cell Culture/methods , Cell Line , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Reproducibility of Results , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL