Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Dis ; 200: 106631, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39111701

ABSTRACT

Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.


Subject(s)
Cerebellar Cortex , Disease Models, Animal , Frataxin , Friedreich Ataxia , Mice, Transgenic , Neuroglia , Friedreich Ataxia/pathology , Friedreich Ataxia/metabolism , Friedreich Ataxia/genetics , Animals , Neuroglia/metabolism , Neuroglia/pathology , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Mice , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Humans , Nerve Degeneration/pathology , Nerve Degeneration/metabolism , Male
2.
Front Pharmacol ; 13: 888222, 2022.
Article in English | MEDLINE | ID: mdl-35721207

ABSTRACT

Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.

3.
J Neuroinflammation ; 19(1): 93, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413853

ABSTRACT

BACKGROUND: Friedreich's ataxia is a rare hereditary neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Similar to other neurodegenerative pathologies, previous studies suggested that astrocytes might contribute to the progression of the disease. To fully understand the mechanisms underlying neurodegeneration in Friedreich's ataxia, we investigated the reactivity status and functioning of cultured human astrocytes after frataxin depletion using an RNA interference-based approach and tested the effect of pharmacologically modulating the SHH pathway as a novel neuroprotective strategy. RESULTS: We observed loss of cell viability, mitochondrial alterations, increased autophagy and lipid accumulation in cultured astrocytes upon frataxin depletion. Besides, frataxin-deficient cells show higher expression of several A1-reactivity markers and release of pro-inflammatory cytokines. Interestingly, most of these defects were prevented by chronically treating the cells with the smoothened agonist SAG. Furthermore, in vitro culture of neurons with conditioned medium from frataxin-deficient astrocytes results in a reduction of neuronal survival, neurite length and synapse formation. However, when frataxin-deficient astrocytes were chronically treated with SAG, we did not observe these alterations in neurons. CONCLUSIONS: Our results demonstrate that the pharmacological activation of the SHH pathway could be used as a target to modulate astrocyte reactivity and neuron-glia interactions to prevent neurodegeneration in Friedreich's ataxia.


Subject(s)
Friedreich Ataxia , Neurodegenerative Diseases , Neurotoxicity Syndromes , Astrocytes/metabolism , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Humans , Iron-Binding Proteins , Mitochondria , Neurodegenerative Diseases/metabolism , Neurotoxicity Syndromes/metabolism , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL