Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675647

This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.


Contrast Media , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Magnetite Nanoparticles , Theranostic Nanomedicine , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Humans , Gold/chemistry , Dextrans/chemistry , Gadolinium/chemistry , Surface Properties , Hyperthermia, Induced/methods , Particle Size
2.
J Am Chem Soc ; 145(42): 23249-23256, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37813379

Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.

3.
Inorg Chem ; 62(34): 14044-14054, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37594252

Three mixed-valence barium iron fluorides, Ba7Fe7F34, Ba2Fe2F9, and BaFe2F7, were prepared through hydrothermal redox reactions. The characteristic structures of these compounds feature diverse distributions of FeIIF6 octahedra and FeIIIF6 groups. Ba7Fe7F34 contained one-dimensional infinite ∞[FeIIFeIII6F34]14- double chains, comprising cis corner-sharing octahedra along the b direction; Ba2Fe2F9 contained one-dimensional ∞[Fe2F9]4- double chains, consisting of cis corner-sharing octahedra along the chain (a-axis direction) and trans corner-sharing octahedra vertical to the chain, while BaFe2F7 revealed three-dimensional (3D) frameworks that consist of isolated edge-sharing dinuclear FeII2F10 units linked via corners by FeIIIF6 octahedra. Magnetization and Mössbauer spectroscopy measurements revealed that Ba7Fe7F34 exhibits an antiferromagnetic phase transition at ∼11 K, where ferrimagnetic ∞[FeIIFeIII6F34]14- double chains are arranged in a paralleling manner, while Ba2Fe2F9 shows canted antiferromagnetic ordering at ∼32.5 K, leading to noncollinear spin ordering.

4.
J Hazard Mater ; 448: 130948, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36860076

Unlike acidic sulfide mine wastes, where metal/loid mobility and bioaccessibility has been widely studied, less attention has been paid to alkaline cyanide heap leaching wastes. Thus, the main goal of this study is to evaluate the mobility and bioaccessibility of metal/loids in Fe-rich (up to 55%) mine wastes resulting from historical cyanide leaching activities. Wastes are mainly composed of oxides/oxyhydroxides (i.e. goethite and hematite), oxyhydroxisulfates (i.e. jarosite), sulfates (i.e., gypsum, evaporitic sulfate salts), carbonates (i.e., calcite, siderite) and quartz, with noticeable concentrations of metal/loids (e.g., 1453-6943 mg/kg of As, 5216-15,672 mg/kg; of Pb, 308-1094 mg/kg of Sb, 181-1174 mg/kg of Cu, or 97-1517 mg/kg of Zn). The wastes displayed a high reactivity upon rainfall contact associated to the dissolution of secondary minerals such as carbonates, gypsum, and other sulfates, exceeding the threshold values for hazardous wastes in some heap levels for Se, Cu, Zn, As, and sulfate leading to potential significant risks for aquatic life. High concentrations of Fe, Pb, and Al were released during the simulation of digestive ingestion of waste particles, with average values of 4825 mg/kg of Fe, 1672 mg/kg of Pb, and 807 mg/kg of Al. Mineralogy may control the mobility and bioaccessibility of metal/loids under rainfall events. However, in the case of the bioaccessible fractions different associations may be observed: i) the dissolution of gypsum, jarosite and hematite would mainly release Fe, As, Pb, Cu, Se, Sb and Tl; ii) the dissolution of an un-identified mineral (e.g., aluminosilicate or Mn oxide) would lead to the release of Ni, Co, Al and Mn and iii) the acid attack of silicate materials and goethite would enhance the bioaccessibility of V and Cr. This study highlights the hazardousness of wastes from cyanide heap leaching, and the need to adopt restoration measures in historical mine sites.

5.
J Mater Chem A Mater ; 11(10): 5320-5327, 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36911163

Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.

6.
Chem Sci ; 14(11): 3048-3055, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36937587

A bifunctionalized polyoxometalate (POM), [V6O19(C16H15N6O)2]2-, which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(ii) or Zn(ii) ions produces crystalline neutral 1D networks of formula Fe[V6O19(C16H15N6O)2]·solv (2) and Zn[V6O19(C16H15N6O)2]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect). Interestingly, this porous and flexible structure enables reversible exchange of solvents in 2, which allows tuning the temperature of the thermal SCO. In 2 and 3, the hexavanadate unit can be reduced by electrochemical or chemical means in a reversible way. Chemical reduction and reoxidation by a postsynthetic method is accompanied by the insertion in the structure of the reductant and oxidant molecules (cobaltocene and tribromide, respectively), which provokes drastic changes in the spin state of Fe(ii). This leads to an elegant switching multifunctional material in which SCO properties of the Fe(ii) complexes coexist with the redox properties of the POM and can be tuned by a variety of stimuli such as temperature, light, solvent exchange or electron transfer. During the reduction process, 3 undergoes a single-crystal-to-single-crystal one-electron reduction, which confirms the presence of cobaltocenium cations by single crystal X-ray diffraction.

7.
Dalton Trans ; 52(5): 1219-1228, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36633546

Layered double hydroxides (LDHs) are a class of two-dimensional (2D) anionic materials that exhibit remarkable chemical versatility, making them ideal building blocks in the design of complex multifunctional materials. In this line, a NiFe-LDH is probably one of the most important LDHs due to its interesting electrochemical and magnetic properties. However, no direct magnetic measurements of exfoliated NiFe-LDH nanosheets have been reported so far. Herein, we synthesize a hybrid NiFe-LDH family through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 8 to 31.6 Å), minimizing the interlayer dipolar interactions. By intercalation with octadecylsulphate, we have managed to obtain the largest interlayer space reported for a NiFe-LDH while keeping a similar size, morphology and composition. This wide interlayer separation results in a decrease in temperatures at which spontaneous magnetization (TM) occurs and the blocking temperature (TB), as well as a decrease in the coercive fields (HC). In fact, an abrupt drop in all these magnetic parameters above 30 Å interlayer distance is observed, evidencing complete magnetic decoupling of the layers. We have further validated our molecular engineering approach by characterizing the hybrid materials by Mössbauer spectroscopy and comparing the magnetic analysis results with those for a liquid phase exfoliated NiFe-LDH sample. Overall, this work provides fundamental insights into the magnetism of NiFe-LDHs, showing the potential of molecular engineering for designing hybrid layered magnetic materials approaching the 2D magnetic limit.

8.
Protein Sci ; 32(2): e4567, 2023 02.
Article En | MEDLINE | ID: mdl-36658780

DNA-binding proteins from starved cells (Dps) are small multifunctional nanocages expressed by prokaryotes in acute oxidative stress conditions or during the starvation-induced stationary phase, as a bacterial defense mechanism. Dps proteins protect bacterial DNA from damage by either direct binding or by removing precursors of reactive oxygen species from solution. The DNA-binding properties of most Dps proteins studied so far are related to their unordered, flexible, N- and C-terminal extensions. In a previous work, we revealed that the N-terminal tails of Deinoccocus grandis Dps shift from an extended to a compact conformation depending on the ionic strength of the buffer and detected a novel high-spin ferrous iron center in the proximal ends of those tails. In this work, we further explore the conformational dynamics of the protein by probing the effect of divalent metals binding to the tail by comparing the metal-binding properties of the wild-type protein with a binding site-impaired D34A variant using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism, and small-angle X-ray scattering. The N-terminal ferrous species was also characterized by Mössbauer spectroscopy. The results herein presented reveal that the conformation of the N-terminal tails is altered upon metal binding in a gradual, reversible, and specific manner. These observations may point towards the existence of a regulatory process for the DNA-binding properties of Dps proteins through metal binding to their N- and/or C-terminal extensions.


Bacterial Proteins , Deinococcus , Amino Acid Sequence , Bacterial Proteins/chemistry , Deinococcus/chemistry , Deinococcus/genetics , Deinococcus/metabolism , DNA, Bacterial/metabolism
9.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article En | MEDLINE | ID: mdl-35563263

DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.


Bacterial Proteins , Deinococcus , Amino Acid Sequence , Bacterial Proteins/metabolism , DNA/metabolism , Deinococcus/genetics , Iron/metabolism , Models, Molecular , Osmolar Concentration
10.
ACS Appl Mater Interfaces ; 14(8): 10758-10768, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35179870

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.


Metal-Organic Frameworks , Anti-Bacterial Agents/pharmacology , Cymenes , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Oxidation-Reduction
11.
Eur Biophys J ; 50(3-4): 561-570, 2021 May.
Article En | MEDLINE | ID: mdl-34009405

Iron-sulfur centers are widespread in living organisms, mostly performing electron transfer functions, either in electron transfer chains or as part of multi-enzymatic complexes, while being also present in enzyme active sites, handling substrate catalysis. Rubredoxin is the simplest iron-sulfur containing protein constituted by a single polypeptide chain of 50 to 60 amino acids, of which four cysteine residues are responsible for metal binding in a tetrahedral coordination sphere. In this manuscript we explore the structure and stability of both apo- and holo-forms of a Rubredoxin from Marinobacter hydrocarbonoclasticus using Synchrotron Radiation Circular Dichroism (SRCD) in combination with other biochemical and spectroscopic techniques. The results are consistent with a holo-protein form containing a monomeric iron center with UV-visible maxima at 760, 578, 494, 386, 356 and 279 nm, an intense EPR resonance with a g value around 4.3 and Mössbauer spectroscopy parameters of δ equal to 0.69 mm/s and ΔEQ equal to 3.25 mm/s, for the ferrous reconstituted state. SRCD data, obtained for the first time for the apo-form, show a quite defined structure with ∆ε maximum at 191 nm and minima at 203 and 231 nm. Most significantly, the presence of isosbestic points at 189 and 228 nm made the interconversion between the two stable apo- and holo-form solution structures clear. SRCD temperature dependence data shows that for both forms the denaturation process proceeds through an intermediate species.


Iron-Sulfur Proteins/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Iron/metabolism , Marinobacter , Rubredoxins , Sulfur
12.
Dalton Trans ; 50(7): 2536-2544, 2021 Feb 21.
Article En | MEDLINE | ID: mdl-33522546

The synthesis, crystal structure and (photo)magnetic properties of the anhydrous spin crossover salt of formula [Fe(bpp)2](C6H8O4) (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H8O4 = adipate dianion), obtained by desolvation at 400 K of the original tetrahydrate in a single-crystal-to-single-crystal (SC-SC) transformation, are reported. This work offers a comparison between this compound and the previously reported hydrated material ([Fe(bpp)2](C6H8O4)·4H2O, 1·4H2O), highlighting the significance of the thermal conditions used in the dehydration-rehydration processes. In both compounds, a hydrogen-bonded network between iron(ii) complexes and adipate anions is observed. The original tetrahydrate (1·4H2O) is low-spin and desolvation at 450 K triggers a low-spin (LS) to high-spin (HS) transition to an amorphous phase that remains stable over the whole temperature range of study. Surprisingly, the dehydrated compound at 400 K (1) keeps the crystallinity, undergoes a partial spin crossover (T1/2 = 180 K) and a quantitative LS to HS photomagnetic conversion at low temperatures, with a T(LIESST) value of 61 K.

13.
Int J Pharm ; 593: 120097, 2021 Jan 25.
Article En | MEDLINE | ID: mdl-33217547

Polymeric platforms obtained by three-dimensional (3D) printing are becoming increasingly important as multifunctional therapeutic systems for bone treatment applications. In particularly, researchers aim to control bacterial biofilm on these 3D-platforms and enhance re-growing bone tissue, at the same time. This study aimed to fabricate a 3D-printed polylactic acid platform loaded with hydroxyapatite (HA), iron oxide nanoparticles (IONPs) and an antibiotic (minocycline) with tuneable properties and multistimuli response. IONPs were produced by a facile chemical co-precipitation method showing an average diameter between 11 and 15 nm and a superparamagnetic behaviour which was preserved when loaded into the 3D-platforms. The presence of two types of nanoparticles (IONPs and HA) modify the nanomorphological/nanotopographical feature of the 3D-platforms justifying their adequate bioactivity profile and in vitro cellular effects on immortalized and primary osteoblasts, including cytocompatibility and increased osteogenesis-related gene expression (RUNX2, BGLAP and SPP1). Disk diffusion assays and SEM analysis confirmed the effect of the 3D-platforms loaded with minocycline against Staphylococcus aureus. Altogether results showed that fabricated 3D-platforms combined the exact therapeutic antibiofilm dose of the antibiotic against S. aureus, with the enhanced osteogenic stimulation of the HA and IONPs nanoparticles which is a disruptive approach for bone targeting applications.


Magnetite Nanoparticles , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bone Regeneration , Bone and Bones , Osteogenesis , Printing, Three-Dimensional , Staphylococcus aureus , Tissue Scaffolds
14.
Inorg Chem ; 59(13): 9261-9269, 2020 Jul 06.
Article En | MEDLINE | ID: mdl-32543836

Tetraphenylphosphonium salts of Co and Fe complexes with alkyl-substituted, tert-butyl (tb), and isopropyl (dp) 2,3-thiophenedithiolate (α-tpdt) ligands, namely, TPP[Co(α-tb-tpdt)2] (3), TPP2[Fe(α-tb-tpdt)2]2 (4a-b), TPP[Co(α-dp-tpdt)2] (5), and TPP[Fe(α-dp-tpdt)2] (6) were prepared and characterized by cyclic voltammetry, single crystal X-ray diffraction, magnetic susceptibility measurements, and 57Fe Mössbauer spectroscopy. Compound 3 and 5 are isostructural with their Au and Ni analogues with a square-planar coordination geometry. Compound 4 presents two polymorphs (4a-b) both showing a Fe(III) bisdithiolene dimerization. The magnetic susceptibility of 3 and 5 exhibits behavior dominated by antiferromagnetic interactions, with room-temperature magnetic moments of 3.40 and 3.36 µB, respectively, indicating that these square-planar Co(III) complexes assume an intermediate spin electronic configuration (S = 1) as supported by multiconfigurational and DFT calculations.

15.
Chemistry ; 26(29): 6504-6517, 2020 May 20.
Article En | MEDLINE | ID: mdl-32053228

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, electron microscopy, thermogravimetric analysis coupled with mass spectrometry and 29 Si solid-state nuclear magnetic resonance, among others. The effect on the electronic properties of the functionalized LDH was investigated by a magnetic study in combination with Mössbauer spectroscopy. Moreover, the reversibility of the silane-functionalization at basic pH was demonstrated, and the quality of the resulting LDH was proven by studying the electrochemical performance in the oxygen evolution reaction in basic media. Furthermore, the anion exchange capability for the NiFe-APTES was tested employing CrVI , resulting in an increase of 200 % of the anion retention. This report allows for a new degree of tunability of LDHs, opening the door to the synthesis of new hybrid architectures and materials.

16.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Article En | MEDLINE | ID: mdl-31261832

Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in biomedicine due to their high intrinsic magnetization behaviour. These are small particles of magnetite or maghemite, and when coated, their surface oxidation is prevented, their aggregation tendency is reduced, their dispersity is improved, and the stability and blood circulation time are increased, which are mandatory requirements in biomedical applications. In this work, SPIONs were synthesized in air through a reduction-precipitation method and coated with four different polymers (Polyethylene glycol(PEG) 1000/6000 and dextran T10/T70). All the synthesized samples were structurally and magnetically characterized by transmission electron microscopy, Fourier transform infra-red spectroscopy, X-ray powder diffraction, Mössbauer spectroscopy, and Superconducting Quantum Interference Device (SQUID) magnetometry. SPIONs centrifuged and dried in vacuum with an average diameter of at least 7.5 nm and a composition ≤60% of maghemite and ≥40% of magnetite showed the best magnetization results, namely a saturation magnetization of ~64 emu/g at 300 K, similar to the best reported values for SPIONs prepared in controlled atmosphere. As far as SPIONs' coatings are concerned, during their preparation procedure, surface polymers must be introduced after the SPIONs' precipitation. Furthermore, polymers with shorter chains do not affect the SPIONs' magnetization performance, although longer chain polymers significantly decrease the coated particle magnetization values, which is undesirable.

17.
Chemosphere ; 223: 171-179, 2019 May.
Article En | MEDLINE | ID: mdl-30776762

Old mine tailings from Northern and Central Portugal were studied in order to perform a radiological and chemical characterization. The evaluation of massic activity of natural radionuclides and concentrations in tailings of polymetallic and Ra/U mines was performed by gamma spectrometry and neutron activation analysis. Iron speciation was carried out by Mössbauer spectroscopy. In polymetallic tailings with physical ore processing (Cumieira and Verdes - exploited for Sn, Nb-Ta) higher contents of Th, 228Ra and 226Ra in the coarser materials occur, probably due to their presence in host rock and ore fragments. In finer tailings, washing may explain the lower 226Ra and 210Pb massic activity. In tailings with physical/chemical ore processing (Covas - exploited for W and Sn) high U contents and a tendency for higher 226Ra and 210Pb massic activity in the fine materials is observed, probably due to their incorporation in nano-sized particles of iron oxides. A high variation of the 210Pb/226Ra ratio occurs in polymetallic tailings; a deficit of 210Pb can be observed particularly in deposits of settling tanks drained from dumps of chemically treated ore. In Ervideira-Mestras tailings (Ra/U exploitation) where no ore process in situ was performed, a near equilibrium between 210Pb and 226Ra occurs. Dose risk assessment was carried out by calculating external outdoor Annual Effective Dose Rate; the dose rates in air due to terrestrial gamma radiation are low for the polymetallic tailings (<47 nGy/h), and higher for tailings of Ra/U (up to 4130 nGy/h), in the worst scenario.


Mining , Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Gamma Rays , Lead Radioisotopes/analysis , Portugal , Radium/analysis , Risk Assessment , Spectrometry, Gamma , Uranium/analysis
18.
J Am Chem Soc ; 140(39): 12611-12621, 2018 Oct 03.
Article En | MEDLINE | ID: mdl-30198265

The mixed-valence FeIIFeIII 2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2- = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]- establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3 symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10-3 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.

19.
Dalton Trans ; 47(27): 9156-9163, 2018 Jul 10.
Article En | MEDLINE | ID: mdl-29946627

Three new mononuclear Fe(ii) complexes have been prepared and characterized by the combination of tetradentate tris(2-pyridylmethyl)amine (TPMA) with three neutral bidentate ligands, such as ethylenediamine (en), 1,2-diaminopropane (pn) and 2-picolylamine (2-pic), in compounds [FeII(TPMA)(en)](ClO4)2 (1), [FeII(TPMA)(2-pic)](ClO4)2 (2) and [FeII(TPMA)(pn)](ClO4)2 (3). Structural and magnetic characterization demonstrates that the three compounds present a complete SCO behavior. The absence of strong intermolecular interactions and solvent molecules leads to reversible and gradual spin transitions. The different ligands allow tuning T1/2 from 130 K (2) to 325 K (3). The compound with the lowest T1/2 (2) shows the LIESST effect with a TLIESST of 43 K. Interestingly, the use of these relatively small bidentate ligands leads to the crystallization in non-centrosymmetric space groups in contrast with previous studies using other bidentate ligands.

20.
Chem Sci ; 9(9): 2413-2418, 2018 Mar 07.
Article En | MEDLINE | ID: mdl-29732116

Herein we report the synthesis of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, which shows a non-interpenetrated hierarchical crystal structure with mesoporous one-dimensional channels of ca. 3 nm and orthogonal microporous channels of ca. 1 nm. This highly stable MOF (aqueous solution with pH values ranging from 2 to 11 and different organic solvents), which possesses the well-known [Fe3(µ3-O)(COO)6] secondary building unit, has proven to be an efficient catalyst for the aerobic oxidation of dibenzothiophenes.

...