Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Methods Mol Biol ; 2494: 161-194, 2022.
Article in English | MEDLINE | ID: mdl-35467207

ABSTRACT

Rice (Oryza sativa L.) is the staple food for over half of the world population. However, most rice varieties are severely injured by abiotic stresses, with strong social and economic impacts. Understanding rice responses to stress may guide breeding for more tolerant varieties. However, the lack of consistency in the design of the stress experiments described in the literature limits comparative studies and output assessments. The use of identical setups is the only way to generate comparable data. This chapter comprises three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB NOVA to assess the response of rice plants to different abiotic stresses-high salinity, cold, drought, simulated drought, and submergence-and their recovery capacity when intended. All sections include a detailed description of the materials and methodology and useful notes gathered from our team experience. We use seedlings since rice plants at this stage show high sensitivity to abiotic stresses. For the salt, cold, and simulated drought (PEG, polyethylene glycol) stress assays, we grow rice seedlings in a hydroponic system, while for the drought assay, plants are grown in soil and subjected to water withholding. For submergence, we use water-filled Magenta boxes. All setups enable visual score determination and are suitable for sample collection during stress imposition and also recovery. The proposed methodologies are affordable and straightforward to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic levels.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Oryza/genetics , Plant Breeding , Seedlings/genetics , Stress, Physiological/genetics , Water
2.
Foods ; 11(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159410

ABSTRACT

Rice (Oryza sativa L.) is one of the most cultivated and consumed crops worldwide. It is mainly produced in Asia but, due to its large genetic pool, it has expanded to several ecosystems, latitudes and climatic conditions. Europe is a rice producing region, especially in the Mediterranean countries, that grow mostly typical japonica varieties. The European consumer interest in rice has increased over the last decades towards more exotic types, often more expensive (e.g., aromatic rice) and Europe is a net importer of this commodity. This has increased food fraud opportunities in the rice supply chain, which may deliver mixtures with lower quality rice, a problem that is now global. The development of tools to clearly identify undesirable mixtures thus became urgent. Among the various tools available, DNA-based markers are considered particularly reliable and stable for discrimination of rice varieties. This review covers aspects ranging from rice diversity and fraud issues to the DNA-based methods used to distinguish varieties and detect unwanted mixtures. Although not exhaustive, the review covers the diversity of strategies and ongoing improvements already tested, highlighting important advantages and disadvantages in terms of costs, reliability, labor-effort and potential scalability for routine fraud detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...