Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642796

ABSTRACT

Pemphigus is a severe blistering disease caused by autoantibodies primarily against the desmosomal cadherins desmoglein (DSG)1 and DSG3 which impair desmosome integrity. Especially for the acute phase, additional treatment options allowing to reduce corticosteroids would fulfill an unmet medical need. Here, we provide evidence that epidermal growth factor receptor (EGFR) inhibition by erlotinib ameliorates pemphigus vulgaris immunoglobulin G (PV-IgG) -induced acantholysis in intact human epidermis. PV-IgG caused phosphorylation of EGFR (Y845) and SRC in human epidermis. In line with that, a phosphotyrosine kinome analysis revealed a robust response associated with EGFR and SRC family kinase signaling in response to PV-IgG but not pemphigus foliaceus autoantibodies. Erlotinib inhibited PV-IgG-induced epidermal blistering and EGFR phosphorylation, loss of desmosomes as well as ultrastructural alterations of desmosome size, plaque symmetry, keratin filament insertion and restored the desmosome midline considered as hallmark of mature desmosomes. Erlotinib enhanced both single molecule DSG3 binding frequency and strength and delayed DSG3 fluorescence recovery supporting that EGFR inhibition increases DSG3 availability and cytoskeletal anchorage. Our data indicate that EGFR is a promising target for pemphigus therapy due to its link to several signaling pathways known to be involved in pemphigus pathogenesis.

2.
J Invest Dermatol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677661

ABSTRACT

During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.

3.
Acta Physiol (Oxf) ; 238(4): e14006, 2023 08.
Article in English | MEDLINE | ID: mdl-37243909

ABSTRACT

Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.


Subject(s)
Pemphigus , Humans , Pemphigus/metabolism , Pemphigus/pathology , Desmosomes/metabolism , Cell Adhesion/physiology , Cadherins/metabolism , Cadherins/pharmacology , Myocardium/metabolism , Epithelium/metabolism , Endothelium/metabolism
5.
J Cell Sci ; 136(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36594662

ABSTRACT

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Subject(s)
Desmosomes , Disease , Humans , Cell Adhesion , Desmosomes/physiology , Pemphigus
6.
Nat Commun ; 14(1): 116, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624106

ABSTRACT

Pemphigus vulgaris is a life-threatening blistering skin disease caused by autoantibodies destabilizing desmosomal adhesion. Current therapies focus on suppression of autoantibody formation and thus treatments directly stabilizing keratinocyte adhesion would fulfill an unmet medical need. We here demonstrate that apremilast, a phosphodiesterase 4 inhibitor used in psoriasis, prevents skin blistering in pemphigus vulgaris. Apremilast abrogates pemphigus autoantibody-induced loss of keratinocyte cohesion in ex-vivo human epidermis, cultured keratinocytes in vitro and in vivo in mice. In parallel, apremilast inhibits keratin retraction as well as desmosome splitting, induces phosphorylation of plakoglobin at serine 665 and desmoplakin assembly into desmosomal plaques. We established a plakoglobin phospho-deficient mouse model that reveals fragile epidermis with altered organization of keratin filaments and desmosomal cadherins. In keratinocytes derived from these mice, intercellular adhesion is impaired and not rescued by apremilast. These data identify an unreported mechanism of desmosome regulation and propose that apremilast stabilizes keratinocyte adhesion and is protective in pemphigus.


Subject(s)
Pemphigus , Humans , Mice , Animals , Pemphigus/drug therapy , gamma Catenin , Cell Adhesion , Keratinocytes , Epidermis , Blister , Autoantibodies , Keratins , Desmosomes
7.
Cell Mol Life Sci ; 80(1): 25, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36602635

ABSTRACT

Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.


Subject(s)
Autoimmune Diseases , Pemphigus , Humans , Desmoglein 3/metabolism , Actins/metabolism , Desmosomes/metabolism , Keratinocytes/metabolism , Pemphigus/metabolism , Cadherins/metabolism , Cell Adhesion , Autoimmune Diseases/metabolism
8.
Med Sci Educ ; 32(5): 1033-1044, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36097588

ABSTRACT

Background: During the COVID-19 pandemic, in-person cadaveric dissection laboratories for teaching anatomy were omitted by many schools around the world. While knowledge domains can be easily evaluated via remote exams, non-traditional discipline-independent skills such as those encouraged through reflection on the topic of death are often overlooked. This study investigated how different anatomy course formats played a role in initiating students' reflections on death during the COVID-19 pandemic. Method: In fall 2020, 217 medical, dental, premedical, and health sciences students from 13 international universities discussed differences in their anatomy courses online. Formats of anatomy courses ranged from dissection-based, prosection-based, hybrid (combination of dissection and prosection) to no laboratory exposure at all. Students' responses to the question, "Did/does your anatomy course initiate your thinking about life's passing?" were collected, and they self-reported themes that were present in their reflections on death using a multiple-choice prompt. Statistical analyses to detect differences between students with and without exposure to cadavers were performed using the chi-squared test. Results: When comparing students who had exposure to human anatomical specimens to those who had no exposure, the majority of students with exposure thought that the course did initiate thoughts about life's passing, compared to students without exposure (P < 0.05). Reflection themes were consistent across groups. Discussion: These findings indicate that anatomy dissection courses are important for the initiation of students' feelings about the topic of death. Omission of cadaveric dissection- or prosection-based laboratories will decrease the likelihood that students initiate reflection on this topic and gain important transferable skills.

9.
Front Immunol ; 13: 884241, 2022.
Article in English | MEDLINE | ID: mdl-35711465

ABSTRACT

Desmosomes are important epidermal adhesion units and signalling hubs, which play an important role in pemphigus pathogenesis. Different expression patterns of the pemphigus autoantigens desmoglein (Dsg)1 and Dsg3 across different epidermal layers have been demonstrated. However, little is known about changes in desmosome composition in different epidermal layers or in patient skin. The aim of this study was thus to characterize desmosome composition in healthy and pemphigus skin using super-resolution microscopy. An increasing Dsg1/Dsg3 ratio from lower basal (BL) to uppermost granular layer (GL) was observed. Within BL desmosomes, Dsg1 and Dsg3 were more homogeneously distributed whereas superficial desmosomes mostly comprised one of the two molecules or domains containing either one but not both. Extradesmosomal, desmoplakin (Dp)-independent, co-localization of Dsg3 with plakoglobin (Pg) was found mostly in BL and extradesmosomal Dsg1 co-localization with Pg in all layers. In contrast, in the spinous layer (SL) most Dsg1 and Dsg3 staining was confined to desmosomes, as revealed by the co-localization with Dp. In pemphigus patient skin, Dsg1 and Dsg3 immunostaining was altered especially along blister edges. The number of desmosomes in patient skin was reduced significantly in basal and spinous layer keratinocytes with only few split desmosomes found. In addition, Dsg1-Pg co-localization at the apical BL and Dsg3-Pg co-localization in SL were significantly reduced in patients, suggesting that that extradesmosomal Dsg molecules were affected. These results support the hypothesis that pemphigus is a desmosome assembly disease and may help to explain histopathologic differences between pemphigus phenotypes.


Subject(s)
Pemphigus , Desmoglein 1/metabolism , Desmoglein 3/metabolism , Desmosomes , Epidermis , Humans , Skin
10.
Cell Mol Life Sci ; 79(5): 223, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35380280

ABSTRACT

Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.


Subject(s)
Desmosomes , Keratins , Cell Adhesion , Cytoskeleton/metabolism , Desmogleins/metabolism , Desmosomes/metabolism , Keratinocytes/metabolism , Keratins/metabolism
11.
Biophys J ; 121(7): 1322-1335, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35183520

ABSTRACT

Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.


Subject(s)
Desmoglein 2 , Desmosomes , Cadherins/metabolism , Cell Adhesion , Desmoglein 2/analysis , Desmoglein 2/metabolism , Desmosomes/metabolism , Epithelial Cells/metabolism , Tryptophan/metabolism
12.
Ann Anat ; 237: 151741, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33892095

ABSTRACT

BACKGROUND: Medical and dental students' feelings and thoughts about the topic of death and life's passing are often associated with learning in the gross anatomy course, when students begin working with a deceased body donor in order to study human anatomy. Little is known of whether the format of anatomy teaching has an impact on these experiences. An observational study was performed to capture the initiation of students' sentiments on the topic of life's passing during the anatomy course at 14 international universities, identify common themes regarding these thoughts, and to study the connection to variations in anatomy course formats and included elements. METHOD: Preclinical anatomy students reflected on one question (i.e., "How did your experience in the anatomy laboratory bring about your reflections on the meaning of life and human existence as well as the sanctity of one's passing?"). Written assignments were collected and anonymously coded. Information on anatomy courses was obtained via faculty questionnaires. RESULT: A variety of themes were identified at the different schools, correlated with different anatomy formats and elements. Results indicate that the courses that offer hands-on cadaveric dissections may play an important role in triggering these sentiments. DISCUSSION: The initiation of students' sentiments about the topic of death varies and includes several themes. There can be a connection to the way anatomy is taught, particularly if hands-on comprehensive cadaveric dissection or prosections are included. CONCLUSION: In summary, anatomy courses can initiate students' thinking about life's passing - particularly in schools that offer hands-on cadaveric dissections or prosections.


Subject(s)
Anatomy , Education, Medical, Undergraduate , Students, Medical , Anatomy/education , Cadaver , Curriculum , Dissection , Humans , Surveys and Questionnaires , Universities
13.
Acta Physiol (Oxf) ; 231(4): e13609, 2021 04.
Article in English | MEDLINE | ID: mdl-33354837

ABSTRACT

AIM: Desmoplakin (Dp) is a crucial component of the desmosome, a supramolecular cell junction complex anchoring intermediate filaments. The mechanisms how Dp modulates cell-cell adhesion are only partially understood. Here, we studied the impact of Dp on the function of desmosomal adhesion molecules, desmosome turnover and intercellular adhesion. METHODS: CRISPR/Cas9 was used for gene editing of human keratinocytes which were characterized by Western blot and immunostaining. Desmosomal ultrastructure and function were assessed by electron microscopy and cell adhesion assays. Single molecule binding properties and localization of desmosomal cadherins were studied by atomic force microscopy and super-resolution imaging. RESULTS: Knockout (ko) of Dp impaired cell cohesion to drastically higher extents as ko of another desmosomal protein, plakoglobin (Pg). In contrast to Pg ko, desmosomes were completely absent in Dp ko. Binding properties of the desmosomal adhesion molecules desmocollin (Dsc) 3 and desmoglein (Dsg) 3 remained unaltered under loss of Dp. Dp was required for assembling desmosomal cadherins into large clusters, as Dsg2 and Dsc3, adhesion molecules primarily localized within desmosomes, were redistributed into small puncta in the cell membrane of Dp ko cells. Additional silencing of desmosomal cadherins in Dp ko did not further increase loss of intercellular adhesion. CONCLUSION: Our data demonstrate that Dp is essential for desmosome formation but does not influence intercellular adhesion on the level of individual cadherin binding properties. Rather, macro-clustering of desmosomal adhesion molecules through Dp is crucial. These results may help to better understand severe diseases which are caused by Dp dysfunction.


Subject(s)
Cadherins , Desmosomes , Cell Adhesion , Cluster Analysis , Desmogleins , Desmoplakins , Humans
14.
J Invest Dermatol ; 141(5): 1219-1229.e11, 2021 05.
Article in English | MEDLINE | ID: mdl-33098828

ABSTRACT

Intercellular adhesion is essential for tissue integrity and homeostasis. Desmosomes are abundant in the epidermis and the myocardium-tissues, which are under constantly changing mechanical stresses. Yet, it is largely unclear whether desmosomal adhesion can be rapidly adapted to changing demands, and the mechanisms underlying desmosome turnover are only partially understood. In this study we show that the loss of the actin-binding protein α-adducin resulted in reduced desmosome numbers and prevented the ability of cultured keratinocytes or murine epidermis to withstand mechanical stress. This effect was not primarily caused by decreased levels or impaired adhesive properties of desmosomal molecules but rather by altered desmosome turnover. Mechanistically, reduced cortical actin density in α-adducin knockout keratinocytes resulted in increased mobility of the desmosomal adhesion molecule desmoglein 3 and impaired interactions with E-cadherin, a crucial step in desmosome formation. Accordingly, the loss of α-adducin prevented increased membrane localization of desmoglein 3 in response to cyclic stretch or shear stress. Our data demonstrate the plasticity of desmosomal molecules in response to mechanical stimuli and unravel a mechanism of how the actin cytoskeleton indirectly shapes intercellular adhesion by restricting the membrane mobility of desmosomal molecules.


Subject(s)
Calmodulin-Binding Proteins/physiology , Desmosomes/physiology , Microfilament Proteins/physiology , Animals , Cadherins/chemistry , Calcium/metabolism , Cell Adhesion , Cell Plasticity , Cells, Cultured , Desmoglein 3/metabolism , Desmosomes/chemistry , Humans , Mice
15.
Front Immunol ; 11: 581370, 2020.
Article in English | MEDLINE | ID: mdl-33193387

ABSTRACT

In pemphigus vulgaris (PV), autoantibodies directed against the desmosomal cadherin desmoglein (Dsg) 3 cause loss of intercellular adhesion. It is known that Dsg3 interactions are directly inhibited by autoantibody binding and that Dsg2 is upregulated in epidermis of PV patients. Here, we investigated whether heterophilic Dsg2-Dsg3 interactions occur and would modulate PV pathogenesis. Dsg2 was upregulated in PV patients' biopsies and in a human ex vivo pemphigus skin model. Immunoprecipitation and cell-free atomic force microscopy (AFM) experiments demonstrated heterophilic Dsg2-Dsg3 interactions. Similarly, in Dsg3-deficient keratinocytes with severely disturbed intercellular adhesion Dsg2 was upregulated in the desmosome containing fraction. AFM revealed that Dsg2-Dsg3 heterophilic interactions showed binding frequency, strength, Ca2+-dependency and catch-bond behavior comparable to homophilic Dsg3-Dsg3 or homophilic Dsg2-Dsg2 interactions. However, heterophilic Dsg2-Dsg3 interactions had a longer lifetime compared to homophilic Dsg2-Dsg2 interactions and PV autoantibody-induced direct inhibition was significantly less pronounced for heterophilic Dsg2-Dsg3 interactions compared to homophilic Dsg3 interactions. In contrast, a monoclonal anti-Dsg2 inhibitory antibody reduced heterophilic Dsg2-Dsg3 and homophilic Dsg2-Dsg2 binding to the same degree and further impaired intercellular adhesion in Dsg3-deficient keratinocytes. Taken together, the data demonstrate that Dsg2 undergoes heterophilic interactions with Dsg3, which may attenuate autoantibody-induced loss of keratinocyte adhesion in pemphigus.


Subject(s)
Desmoglein 2/immunology , Desmoglein 2/metabolism , Pemphigus/immunology , Pemphigus/metabolism , Animals , Antibodies, Heterophile/immunology , Autoantibodies/immunology , Cell Adhesion/immunology , Cell Line , Desmoglein 3/deficiency , Desmoglein 3/immunology , Desmoglein 3/metabolism , Gene Knockout Techniques , Humans , In Vitro Techniques , Keratinocytes/immunology , Keratinocytes/metabolism , Mice , Models, Biological , Pemphigus/pathology , Skin/immunology , Skin/metabolism , Skin/pathology , Up-Regulation
16.
Biophys J ; 119(8): 1489-1500, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33031738

ABSTRACT

Intercellular adhesion of keratinocytes depends critically on desmosomes that, during maturation, acquire a hyperadhesive and thus Ca2+ independent state. Here, we investigated the roles of desmoglein (Dsg) 3 and plakophilins (Pkps) in hyperadhesion. Atomic force microscopy single molecule force mappings revealed increased Dsg3 molecules but not Dsg1 molecules binding strength in murine keratinocytes. However, keratinocytes lacking Dsg3 or Pkp1 or 3 revealed reduced Ca2+ independency. In addition, Pkp1- or 3-deficient keratinocytes did not exhibit changes in Dsg3 binding on the molecular level. Further, wild-type keratinocytes showed increased levels of Dsg3 oligomers during acquisition of hyperadhesion, and Pkp1 deficiency abolished the formation of Ca2+ independent Dsg3 oligomers. In concordance, immunostaining for Dsg1 but not for Dsg3 was reduced after 24 h of Ca2+ chelation in an ex vivo human skin model, suggesting that desmosomal cadherins may have different roles during acquisition of hyperadhesion. Taken together, these data indicate that hyperadhesion may not be a state acquired by entire desmosomes but rather is paralleled by enhanced binding of specific Dsg isoforms such as Dsg3, a process for which plaque proteins including Pkp 1 and 3 are required as well.


Subject(s)
Desmoglein 3 , Keratinocytes , Animals , Cell Adhesion , Humans , Mice , Microscopy, Atomic Force , Plakophilins , Skin
17.
Ann Glob Health ; 86(1): 27, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32166068

ABSTRACT

Background: At a time of global interconnectedness, the internationalization of medical education has become important. Anatomy as an academic discipline, with its close connections to the basic sciences and to medical education, can easily be connected with global health and internationalization of medical education. Here the authors present an international program based on a partnership between twelve anatomy departments in ten countries, on four continents. Details of a proposed plan for the future direction of the program are also discussed. Objective: The aim is to improve global healthcare by preparing future global healthcare leaders via early international networking, international collaboration and exchange, intercultural experience, and connecting two seemingly distant academic disciplines - anatomy and global health - via internationalization of medical education. Methods: Based in the anatomy course, the program involved early international collaboration between preclinical medical and dental students. The program provided a stepwise progression for learning about healthcare and intercultural topics beyond pure anatomy education - starting with virtual small groups of international students, who subsequently presented their work to a larger international audience during group videoconferences. The above progressed to in-person visits for research internships in the basic sciences within industrialized countries. Findings: Students appreciated the international and intercultural interaction, learned about areas outside the scope of anatomy (e.g., differences in healthcare education and delivery systems, Public and Global Health challenges, health ethics, and cultural enrichment), and valued the exchange travel for basic sciences research internships and cultural experience. Conclusions: This unique collaboration of international anatomy departments can represent a new role for the medical anatomy course beyond pure anatomy teaching - involving areas of global health and internationalization of medical education - and could mark a new era of international collaboration among anatomists.


Subject(s)
Anatomy/education , Biomedical Research , Education, Dental , Education, Medical, Undergraduate , Global Health/education , International Cooperation , Australia , Austria , Canada , Denmark , Finland , Germany , Humans , Japan , Program Development , Taiwan , United Kingdom , United States , Videoconferencing
18.
Ann Anat ; 227: 151415, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31513915

ABSTRACT

BACKGROUND: The phrenicoabdominal branch of the left phrenic nerve passes between muscle fiber bundles within the costal part of the diaphragm near the pericardium. In most German textbooks of anatomy, however, its passage is described to be found in the esophageal hiatus. The aim of this study was to reevaluate its topography relative to the diaphragm in a multicentric study and to identify the initiation of this description. METHODS: In this multicentric study, the most dorsomedial branch of the left phrenic nerve was identified as the phrenicoabdominal branch in 400 embalmed anatomic specimens of Caucasian origin. The distance between its passage and the apex of the pericardium, the left border of the esophageal hiatus, and the inner aspect of the left sixth rib was measured on the cranial aspect of the diaphragm. Textbooks on human anatomy published in German language between 1700 and 2018 were reviewed for their description of the passage of the left phrenicoabdominal branch through the diaphragm. RESULTS: The first statement on the passage of the left phrenicoabdominal branch through the esophageal hiatus was given in 1791 by Sömmering. Since then, in German textbooks of anatomy, a duality in the description of the passage of the left phrenicoabdominal branch persists. In none of the individuals examined in this study, the left phrenicoabdominal branch passed through the esophageal hiatus. In 99.5% of all cases, it pierced the costal part of the diaphragm dorsal to or at the same level as the apex of the pericardium. The mean distances (standard deviations) were 3.4 (±1.5) cm to the apex of the pericardium, 5.8 (±2.2) cm to the esophageal hiatus, and 5.5 (±1.6) cm to the inner aspect of the left sixth rib. CONCLUSION: The findings on the position of the left phrenicoabdominal branch relative to the diaphragm help to improve topographical knowledge and prevent inadvertent nerve injury during surgical interventions on or near the diaphragm. Further to this, these results may form a substantial basis to adopt the correct description of the passage of the left phrenicoabdominal branch to anatomical textbook knowledge.


Subject(s)
Diaphragm/anatomy & histology , Esophagus/anatomy & histology , Phrenic Nerve/anatomy & histology , Anatomy/history , Cadaver , Embalming , Female , Germany , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Male , Pericardium/anatomy & histology , Ribs/anatomy & histology , Textbooks as Topic/history , White People
19.
Front Immunol ; 10: 1128, 2019.
Article in English | MEDLINE | ID: mdl-31178865

ABSTRACT

Pemphigus is an autoimmune dermatosis in which mucocutaneous blisters are induced primarily by autoantibodies against Desmoglein (Dsg) 1 and 3. Pemphigus vulgaris (PV) usually is associated with autoantibodies against Dsg3 whereas pemphigus foliaceus (PF) patients present autoantibodies against Dsg1. Several signaling pathways were proposed to cause loss of keratinocyte adhesion. However, relevance of different signaling pathways and role of Dsg1 and 3 to trigger signaling are not fully understood. Here, we show that Ca2+ chelation reduced PV-IgG- and PF-IgG-mediated loss of HaCaT keratinocyte cohesion whereas EGFR inhibition did not inhibit effects of PF-IgG. PV-IgG activated EGFR in a Src-dependent manner whereas both PV-IgG and PF-IgG caused Ca2+ influx independent of EGFR. ERK activation was Src-dependent in response to PV-IgG but not PF-IgG. To delineate the roles of Dsg isoforms to trigger signaling pathways, Dsg3- and Dsg2-deficient HaCaT keratinocyte cell lines were generated using CRISPR/Cas9. Dsg3- but not Dsg2-deficient cells were protected against PV-IgG-induced loss of cell adhesion. Ca2+ influx and ERK activation in response to PF-IgG were preserved in both cell lines.


Subject(s)
Autoantibodies/immunology , Desmoglein 1/metabolism , Desmoglein 3/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Pemphigus/immunology , Pemphigus/metabolism , Signal Transduction , Autoantibodies/blood , Biomarkers , Calcium/metabolism , Cell Adhesion/immunology , Cell Line , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Models, Biological , Pemphigus/diagnosis , Phenotype
20.
Sci Rep ; 9(1): 7887, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133713

ABSTRACT

Though it is known that the water content of biological soft tissues alters mechanical properties, little attempt has been made to adjust the tissue water content prior to biomechanical testing as part of standardization procedures. The objective of this study was to examine the effects of altered water content on the macro and micro scale mechanical tissues properties. Human iliotibial band samples were obtained during autopsies to osmotically adapt their water content. Macro mechanical tensile testing of the samples was conducted with digital image correlation, and micro mechanical tests using atomic force microscopy. Analyses were conducted for elastic moduli, tensile strength, and strain at maximum force, and correlations for water content, anthropometric data, and post-mortem interval. Different mechanical properties exist at different water concentrations. Correlations to anthropometric data are more likely to be found at water concentrations close to the native state. These data underline the need for adapting the water content of soft tissues for macro and micro biomechanical experiments to optimize their validity. The osmotic stress protocol provides a feasible and reliable standardization approach to adjust for water content-related differences induced by age at death, post-mortem interval and tissue processing time with known impact on the stress-strain properties.


Subject(s)
Materials Testing/methods , Tendons/physiology , Water/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Cadaver , Child , Child, Preschool , Elastic Modulus/physiology , Feasibility Studies , Female , Humans , Male , Microscopy, Atomic Force , Middle Aged , Osmosis/physiology , Osmotic Pressure/physiology , Tendons/chemistry , Tendons/ultrastructure , Tensile Strength/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...