Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 149: 106841, 2020 08.
Article in English | MEDLINE | ID: mdl-32305511

ABSTRACT

We present data showing that the number of salamander species in Amazonia is vastly underestimated. We used DNA sequences of up to five genes (3 mitochondrial and 2 nuclear) of 366 specimens, 189 corresponding to 89 non-Amazonian nominal species and 177 Amazonian specimens, including types or topotypes, of eight of the nine recognized species in the region. By including representatives of all known species of Amazonian Bolitoglossa, except for one, and 73% of the currently 132 recognized species of the genus, our dataset represents the broadest sample of Bolitoglossa species, specimens, and geographic localities studied to date. We performed phylogenetic analyses using parsimony with tree-alignment and maximum likelihood (ML) with similarity alignment, with indels as binary characters. Our optimal topologies were used to delimit lineages that we assigned to nominal species and candidate new species following criteria that maximize the consilience of the current species taxonomy, monophyly, gaps in branch lengths, genetic distances, and geographic distribution. We contrasted the results of our species-delimitation protocol with those of Automated Barcode Gap Discovery (ABGD) and multi-rate Poisson Tree Processes (mPTP). Finally, we inferred the historical biogeography of South American salamanders by dating the trees and using dispersal-vicariance analysis (DIVA). Our results revealed a clade including almost all Amazonian salamanders, with a topology incompatible with just the currently recognized nine species. Following our species-delimitation criteria, we identified 44 putative species in Amazonia. Both ABGD and mPTP inferred more species than currently recognized, but their numbers (23-49) and limits vary. Our biogeographic analysis suggested a stepping-stone colonization of the Amazonian lowlands from Central America through the Chocó and the Andes, with several late dispersals from Amazonia back into the Andes. These biogeographic events are temporally concordant with an early land bridge between Central and South America (~10-15 MYA) and major landscape changes in Amazonia during the late Miocene and Pliocene, such as the drainage of the Pebas system, the establishment of the Amazon River, and the major orogeny of the northern Andes.


Subject(s)
Biodiversity , Urodela/classification , Animals , Bayes Theorem , Brazil , Central America , DNA, Mitochondrial/genetics , Geography , Likelihood Functions , Phylogeny , Phylogeography , Species Specificity , Time Factors , Urodela/genetics
2.
Ecol Lett ; 22(5): 884-893, 2019 May.
Article in English | MEDLINE | ID: mdl-30868693

ABSTRACT

Replicate radiations, the repeated multiplication of species associated with ecological divergence, have attracted much attention and generated as much debate. Due to the few well-studied cases, it remains unclear whether replicate radiations are an exceptional result of evolution or a relatively common example of the power of adaptation by natural selection. We examined the case of Eleutherodactylus frogs, which radiated in the Caribbean islands resulting in more than 160 species that occupy very diverse habitats. A time-calibrated phylogeny revealed that these frogs independently diversified on all larger islands producing species that occupy a broad range of microhabitats in different islands. Using phylogenetic comparative methods, we found an association between morphological traits and particular microhabitats, and for most microhabitats detected significant morphological convergence. Our results indicate Caribbean Eleutherodactylus are a novel example of replicate radiations, and highlight the predictability of evolutionary processes, as similar ecological opportunities can lead to similar outcomes.


Subject(s)
Anura , Biological Evolution , Animals , Caribbean Region , Islands , Phylogeny , West Indies
3.
Zootaxa ; 4221(5): zootaxa.4221.5.1, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28187641

ABSTRACT

We studied the variation in genetics, bioacustics, and morphology in Eleutherodactylus glamyrus, a regionally endemic frog species restricted to high elevations in the Sierra Maestra Massif, Western Cuba that was originally described as a cryptic species hidden under the name E. auriculatus. Genetic analysis of mtDNA sequences of the 16S and cob genes identify two allopatric and strongly supported mitochondrial clades (phylogroups) which also showed no haplotype sharing in the nuclear Rag-1 gene. Bioacustic, and morphological comparisons concordantly identify these two phylogroups as independent evolutionary lineages. Therefore, we herein restrict the name Eleutherodactylus glamyrus Estrada and Hedges to populations represented in our analyses as the western phylogroup (Cordillera del Turquino to Pico La Bayamesa) and consider specimens from the eastern phylogroup (Sierra del Cobre) to represent a new species described and named as Eleutherodactylus cattus. Our results add to the growing list of Eleutherodactylus species endemic to Cuba and highlight the importance of combining different sources of evidence for obtaining robust assessments of species limits in amphibians.


Subject(s)
Anura , Animals , Cuba , DNA, Mitochondrial , Genes, RAG-1 , Phylogeny
4.
PLoS One ; 11(3): e0150245, 2016.
Article in English | MEDLINE | ID: mdl-26982578

ABSTRACT

The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.


Subject(s)
Alligators and Crocodiles/physiology , Paternity , Animals , Genetic Markers , Male , Microsatellite Repeats/genetics , Venezuela
5.
Sci Rep ; 5: 8056, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623996

ABSTRACT

Library preparation protocols for high-throughput DNA sequencing (HTS) include amplification steps in which errors can build up. In order to have confidence in the sequencing data, it is important to understand the effects of different Taq polymerases and PCR amplification protocols on the DNA molecules sequenced. We compared thirteen enzymes in three different marker systems: simple, single copy nuclear gene and complex multi-gene family. We also tested a modified PCR protocol, which has been suggested to reduce errors associated with amplification steps. We find that enzyme choice has a large impact on the proportion of correct sequences recovered. The most complex marker systems yielded fewer correct reads, and the proportion of correct reads was greatly affected by the enzyme used. Modified cycling conditions did reduce the number of incorrect sequences obtained in some cases, but enzyme had a much greater impact on the number of correct reads. Thus, the coverage required for the safe identification of genotypes using one of the low quality enzymes could be seven times larger than with more efficient enzymes in a biallelic system with equal amplification of the two alleles. Consequently, enzyme selection for downstream HTS has important consequences, especially in complex genetic systems.


Subject(s)
DNA/analysis , Polymerase Chain Reaction/methods , Taq Polymerase/metabolism , Alleles , Animals , DNA, Mitochondrial/analysis , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Wolves
6.
Mol Ecol ; 14(1): 9-17, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15643947

ABSTRACT

By the mid 20th century, the grey wolf (Canis lupus) was exterminated from most of the conterminous United States (cUS) and Mexico. However, because wolves disperse over long distances, extant populations in Canada and Alaska might have retained a substantial proportion of the genetic diversity once found in the cUS. We analysed mitochondrial DNA sequences of 34 pre-extermination wolves and found that they had more than twice the diversity of their modern conspecifics, implying a historic population size of several hundred thousand wolves in the western cUS and Mexico. Further, two-thirds of the haplotypes found in the historic sample are unique. Sequences from Mexican grey wolves (C. l. baileyi) and some historic grey wolves defined a unique southern clade supporting a much wider geographical mandate for the reintroduction of Mexican wolves than currently planned. Our results highlight the genetic consequences of population extinction within Ice Age refugia and imply that restoration goals for grey wolves in the western cUS include far less area and target vastly lower population sizes than existed historically.


Subject(s)
Conservation of Natural Resources , Genetic Variation , Wolves/genetics , Alaska , Animals , Canada , Mexico , Population Density , Wolves/classification
7.
Science ; 298(5598): 1613-6, 2002 Nov 22.
Article in English | MEDLINE | ID: mdl-12446908

ABSTRACT

Mitochondrial DNA sequences isolated from ancient dog remains from Latin America and Alaska showed that native American dogs originated from multiple Old World lineages of dogs that accompanied late Pleistocene humans across the Bering Strait. One clade of dog sequences was unique to the New World, which is consistent with a period of geographic isolation. This unique clade was absent from a large sample of modern dogs, which implies that European colonists systematically discouraged the breeding of native American dogs.


Subject(s)
Animals, Domestic/genetics , DNA, Mitochondrial/genetics , Dogs/genetics , Alaska , Animals , Animals, Domestic/classification , Bolivia , Breeding , Dogs/classification , Europe , Haplotypes , Humans , Mexico , North America , Peru , Phylogeny , Time , Wolves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL