Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Brain Commun ; 5(2): fcad074, 2023.
Article En | MEDLINE | ID: mdl-37056479

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-ß 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-ß 42/amyloid-ß 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.

2.
Mol Psychiatry ; 26(12): 7813-7822, 2021 12.
Article En | MEDLINE | ID: mdl-34588623

Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer's disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-ß and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-ß, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-ß, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-ß, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-ß and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-ß, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.


Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Prospective Studies , tau Proteins
3.
Sci Rep ; 11(1): 16805, 2021 08 19.
Article En | MEDLINE | ID: mdl-34413373

The spatio-temporal characteristics of grey matter (GM) impairment in multiple sclerosis (MS) are poorly understood. We used a new surface-based diffusion MRI processing tool to investigate regional modifications of microstructure, and we quantified volume loss in GM in a cohort of patients with MS classified into three groups according to disease duration. Additionally, we investigated the relationship between GM changes with disease severity. We studied 54 healthy controls and 247 MS patients classified regarding disease duration: MS1 (less than 5 years, n = 67); MS2 (5-15 years, n = 107); and MS3 (more than15 years, n = 73). We compared GM mean diffusivity (MD), fractional anisotropy (FA) and volume between groups, and estimated their clinical associations. Regional modifications in diffusion measures (MD and FA) and volume did not overlap early in the disease, and became widespread in later phases. We found higher MD in MS1 group, mainly in the temporal cortex, and volume reduction in deep GM and left precuneus. Additional MD changes were evident in cingulate and occipital cortices in the MS2 group, coupled to volume reductions in deep GM and parietal and frontal poles. Changes in MD and volume extended to more than 80% of regions in MS3 group. Conversely, increments in FA, with very low effect size, were observed in the parietal cortex and thalamus in MS1 and MS2 groups, and extended to the frontal lobe in the later group. MD and GM changes were associated with white matter lesion load and with physical and cognitive disability. Microstructural integrity loss and atrophy present differential spatial predominance early in MS and accrual over time, probably due to distinct pathogenic mechanisms that underlie tissue damage.


Gray Matter/pathology , Multiple Sclerosis/pathology , Adult , Anisotropy , Atrophy/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Organ Size , Recurrence , White Matter/pathology
4.
JAMA Neurol ; 78(8): 937-947, 2021 08 01.
Article En | MEDLINE | ID: mdl-34228042

Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ɛ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce. Objective: To investigate the association of the APOE ɛ4 allele with clinical and multimodal biomarkers of AD in adults with DS. Design, Setting, and Participants: This dual-center cohort study recruited adults with DS in Barcelona, Spain, and in Cambridge, UK, between June 1, 2009, and February 28, 2020. Included individuals had been genotyped for APOE and had at least 1 clinical or AD biomarker measurement; 2 individuals were excluded because of the absence of trisomy 21. Participants were either APOE ɛ4 allele carriers or noncarriers. Main Outcomes and Measures: Participants underwent a neurological and neuropsychological assessment. A subset of participants had biomarker measurements: Aß1-42, Aß1-40, phosphorylated tau 181 (pTau181) and neurofilament light chain (NfL) in cerebrospinal fluid (CSF), pTau181, and NfL in plasma; amyloid positron emission tomography (PET); fluorine 18-labeled-fluorodeoxyglucose PET; and/or magnetic resonance imaging. Age at symptom onset was compared between APOE ɛ4 allele carriers and noncarriers, and within-group local regression models were used to compare the association of biomarkers with age. Voxelwise analyses were performed to assess topographical differences in gray matter metabolism and volume. Results: Of the 464 adults with DS included in the study, 97 (20.9%) were APOE ɛ4 allele carriers and 367 (79.1%) were noncarriers. No differences between the 2 groups were found by age (median [interquartile range], 45.9 [36.4-50.2] years vs 43.7 [34.9-50.2] years; P = .56) or sex (51 male carriers [52.6%] vs 199 male noncarriers [54.2%]). APOE ɛ4 allele carriers compared with noncarriers presented with AD symptoms at a younger age (mean [SD] age, 50.7 [4.4] years vs 52.7 [5.8] years; P = .02) and showed earlier cognitive decline. Locally estimated scatterplot smoothing curves further showed between-group differences in biomarker trajectories with age as reflected by nonoverlapping CIs. Specifically, carriers showed lower levels of the CSF Aß1-42 to Aß1-40 ratio until age 40 years, earlier increases in amyloid PET and plasma pTau181, and earlier loss of cortical metabolism and hippocampal volume. No differences were found in NfL biomarkers or CSF total tau and pTau181. Voxelwise analyses showed lower metabolism in subcortical and parieto-occipital structures and lower medial temporal volume in APOE ɛ4 allele carriers. Conclusions and Relevance: In this study, the APOE ɛ4 allele was associated with earlier clinical and biomarker changes of AD in DS. These results provide insights into the mechanisms by which APOE increases the risk of AD, emphasizing the importance of APOE genotype for future clinical trials in DS.


Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Down Syndrome/genetics , Adult , Alleles , Alzheimer Disease/complications , Amyloid beta-Peptides/genetics , Apolipoproteins E , Atrophy , Biomarkers , Cohort Studies , Down Syndrome/complications , Female , Glucose/metabolism , Heterozygote , Hippocampus/pathology , Humans , Male , Middle Aged , Peptide Fragments/genetics , tau Proteins/genetics
5.
Alzheimers Dement ; 17(9): 1499-1508, 2021 09.
Article En | MEDLINE | ID: mdl-33797846

INTRODUCTION: Positron emission tomography (PET) amyloid quantification methods require magnetic resonance imaging (MRI) for spatial registration and a priori reference region to scale the images. Furthermore, different tracers have distinct thresholds for positivity. We propose the AMYQ index, a new measure of amyloid burden, to overcome these limitations. METHODS: We selected 18F-amyloid scans from ADNI and Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) with the corresponding T1-MRI. A subset also had neuropathological data. PET images were normalized, and the AMYQ was calculated based on an adaptive template. We compared AMYQ with the Centiloid scale on clinical and neuropathological diagnostic performance. RESULTS: AMYQ was related with amyloid neuropathological burden and had excellent diagnostic performance to discriminate controls from patients with Alzheimer's disease (AD) (area under the curve [AUC] = 0.86). AMYQ had a high agreement with the Centiloid scale (intraclass correlation coefficient [ICC] = 0.88) and AUC between 0.94 and 0.99 to discriminate PET positivity when using different Centiloid cutoffs. DISCUSSION: AMYQ is a new MRI-independent index for standardizing and quantifying amyloid load across tracers.


Alzheimer Disease/metabolism , Amyloid/metabolism , Magnetic Resonance Imaging , Neuropathology , Positron-Emission Tomography/standards , Aged , Australia , Female , Humans , Male , United States
6.
J Alzheimers Dis ; 79(1): 163-175, 2021.
Article En | MEDLINE | ID: mdl-33252070

BACKGROUND: The cerebrospinal fluid (CSF) biomarkers amyloid-ß 1-42 (Aß42), total and phosphorylated tau (t-tau, p-tau) are increasingly used to assist in the clinical diagnosis of Alzheimer's disease (AD). However, CSF biomarker levels can be affected by confounding factors. OBJECTIVE: To investigate the association of white matter hyperintensities (WMHs) present in the brain with AD CSF biomarker levels. METHODS: We included CSF biomarker and magnetic resonance imaging (MRI) data of 172 subjects (52 controls, 72 mild cognitive impairment (MCI), and 48 AD patients) from 9 European Memory Clinics. A computer aided detection system for standardized automated segmentation of WMHs was used on MRI scans to determine WMH volumes. Association of WMH volume with AD CSF biomarkers was determined using linear regression analysis. RESULTS: A small, negative association of CSF Aß42, but not p-tau and t-tau, levels with WMH volume was observed in the AD (r2 = 0.084, p = 0.046), but not the MCI and control groups, which was slightly increased when including the distance of WMHs to the ventricles in the analysis (r2 = 0.105, p = 0.025). Three global patterns of WMH distribution, either with 1) a low, 2) a peak close to the ventricles, or 3) a high, broadly-distributed WMH volume could be observed in brains of subjects in each diagnostic group. CONCLUSION: Despite an association of WMH volume with CSF Aß42 levels in AD patients, the occurrence of WMHs is not accompanied by excess release of cellular proteins in the CSF, suggesting that WMHs are no major confounder for AD CSF biomarker assessment.


Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Leukoencephalopathies/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Confounding Factors, Epidemiologic , Female , Humans , Image Processing, Computer-Assisted , Leukoencephalopathies/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Phosphorylation
7.
Alzheimers Dement ; 17(4): 618-628, 2021 04.
Article En | MEDLINE | ID: mdl-33196147

INTRODUCTION: A biphasic model for brain structural changes in preclinical Alzheimer's disease (AD) could reconcile some conflicting and paradoxical findings in observational studies and anti-amyloid clinical trials. METHODS: In this study we tested this model fitting linear versus quadratic trajectories and computed the timing of the inflection points vertexwise of cortical thickness and cortical diffusivity-a novel marker of cortical microstructure-changes in 389 participants from the Dominantly Inherited Alzheimer Network. RESULTS: In early preclinical AD, between 20 and 15 years before estimated symptom onset, we found increases in cortical thickness and decreases in cortical diffusivity followed by cortical thinning and cortical diffusivity increases in later preclinical and symptomatic stages. The inflection points 16 to 19 years before estimated symptom onset are in agreement with the start of tau biomarker alterations. DISCUSSION: These findings confirm a biphasic trajectory for brain structural changes and have direct implications when interpreting magnetic resonance imaging measures in preventive AD clinical trials.


Alzheimer Disease/pathology , Cerebral Cortex/pathology , Prodromal Symptoms , Adult , Alzheimer Disease/genetics , Biomarkers/cerebrospinal fluid , Brain , Diffusion Magnetic Resonance Imaging , Humans , Longitudinal Studies , Mutation/genetics , tau Proteins/physiology
8.
Neurology ; 95(18): e2565-e2576, 2020 11 03.
Article En | MEDLINE | ID: mdl-32913016

OBJECTIVE: To characterize the cortical macrostructure and microstructure of behavioral and cognitive changes along the amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD) continuum. METHODS: We prospectively recruited 88 participants with a 3T MRI structural and diffusion-weighted imaging sequences: 31 with ALS, 20 with the behavioral variant of FTD (bvFTD), and 37 cognitively normal controls. Participants with ALS underwent a comprehensive cognitive and behavioral assessment and were dichotomized into ALS without cognitive or behavioral impairment (ALSno-cbi; n = 12) and ALS with cognitive or behavioral impairment (ALScbi; n = 19). We computed cortical thickness and cortical mean diffusivity using a surface-based approach and explored the cortical correlates of cognitive impairment with the Edinburgh Cognitive and Behavioral ALS Screen. RESULTS: The ALSno-cbi and ALScbi groups showed different patterns of reduced cortical thickness and increased cortical mean diffusivity. In the ALSno-cbi group, cortical thinning was restricted mainly to the dorsal motor cortex. In contrast, in the ALScbi group, cortical thinning was observed primarily on frontoinsular and temporal regions bilaterally. There were progressive cortical mean diffusivity changes along the ALSno-cbi, ALScbi, and bvFTD clinical continuum. Participants with ALS with either cognitive or behavioral impairment showed increased cortical mean diffusivity in the prefrontal cortex in the absence of cortical thickness. CONCLUSIONS: Cortical mean diffusivity might be a useful biomarker for the study of extramotor cortical neurodegeneration in the ALS-FTD clinical spectrum. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that the cortical microstructure correlates with cognitive impairment in the ALS-FTD continuum.


Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/psychology , Cerebral Cortex/pathology , Cognition Disorders/pathology , Cognition Disorders/psychology , Frontotemporal Dementia/pathology , Frontotemporal Dementia/psychology , Aged , Amyotrophic Lateral Sclerosis/complications , Cognition Disorders/complications , Female , Frontotemporal Dementia/complications , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Problem Behavior/psychology
9.
Mol Neurodegener ; 15(1): 46, 2020 08 17.
Article En | MEDLINE | ID: mdl-32807227

BACKGROUND: Alzheimer's disease (AD) is the major cause of death in adults with Down syndrome (DS). There is an urgent need for objective markers of AD in the DS population to improve early diagnosis and monitor disease progression. NPTX2 has recently emerged as a promising cerebrospinal fluid (CSF) biomarker of Alzheimer-related inhibitory circuit dysfunction in sporadic AD patients. The objective of this study was to evaluate NPTX2 in the CSF of adults with DS and to explore the relationship of NPTX2 to CSF levels of the PV interneuron receptor, GluA4, and existing AD biomarkers (CSF and neuroimaging). METHODS: This is a cross-sectional, retrospective study of adults with DS with asymptomatic AD (aDS, n = 49), prodromal AD (pDS, n = 18) and AD dementia (dDS, n = 27). Non-trisomic controls (n = 34) and patients with sporadic AD dementia (sAD, n = 40) were included for comparison. We compared group differences in CSF NPTX2 according to clinical diagnosis and degree of intellectual disability. We determined the relationship of CSF NPTX2 levels to age, cognitive performance (CAMCOG, free and cued selective reminding, semantic verbal fluency), CSF levels of a PV-interneuron marker (GluA4) and core AD biomarkers; CSF Aß1-42, CSF t-tau, cortical atrophy (magnetic resonance imaging) and glucose metabolism ([18F]-fluorodeoxyglucose positron emission tomography). RESULTS: Compared to controls, mean CSF NPTX2 levels were lower in DS at all AD stages; aDS (0.6-fold, adj.p < 0.0001), pDS (0.5-fold, adj.p < 0.0001) and dDS (0.3-fold, adj.p < 0.0001). This reduction was similar to that observed in sporadic AD (0.5-fold, adj.p < 0.0001). CSF NPTX2 levels were not associated with age (p = 0.6), intellectual disability (p = 0.7) or cognitive performance (all p > 0.07). Low CSF NPTX2 levels were associated with low GluA4 in all clinical groups; controls (r2 = 0.2, p = 0.003), adults with DS (r2 = 0.4, p < 0.0001) and sporadic AD (r2 = 0.4, p < 0.0001). In adults with DS, low CSF NPTX2 levels were associated with low CSF Aß1-42 (r2 > 0.3, p < 0.006), low CSF t-tau (r2 > 0.3, p < 0.001), increased cortical atrophy (p < 0.05) and reduced glucose metabolism (p < 0.05). CONCLUSIONS: Low levels of CSF NPTX2, a protein implicated in inhibitory circuit function, is common to sporadic and genetic forms of AD. CSF NPTX2 represents a promising CSF surrogate marker of early AD-related changes in adults with DS.


Alzheimer Disease/genetics , Biomarkers/cerebrospinal fluid , C-Reactive Protein/cerebrospinal fluid , Down Syndrome/cerebrospinal fluid , Down Syndrome/complications , Nerve Tissue Proteins/cerebrospinal fluid , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Retrospective Studies
10.
Alzheimers Dement (Amst) ; 12(1): e12052, 2020.
Article En | MEDLINE | ID: mdl-32743041

AIMS/HYPOTHESIS: Midlife obesity is a risk factor for dementia. We investigated the impact of obesity on brain structure, metabolism, and cerebrospinal fluid (CSF) core Alzheimer's disease (AD) biomarkers in healthy elderly. METHODS: We selected controls from ADNI2 with CSF AD biomarkers and/or fluorodeoxyglucose positron emission tomography (FDG-PET) and 3T-MRI. We measured cortical thickness, FDG uptake, and CSF amyloid beta (Aß)1-42, p-tau, and t-tau levels. We performed regression analyses between these biomarkers and body mass index (BMI). RESULTS: We included 201 individuals (mean age 73.5 years, mean BMI 27.4 kg/m2). Higher BMI was related to less cortical thickness and higher metabolism in brain areas typically not involved in AD (family-wise error [FWE] <0.05), but not to AD CSF biomarkers. It is notable that the impact of obesity on brain metabolism and structure was also found in amyloid negative individuals. CONCLUSIONS/INTERPRETATION: In the cognitively unimpaired elderly, obesity has differential effects on brain metabolism and structure independent of an underlying AD pathophysiology.

11.
Alzheimers Dement (Amst) ; 12(1): e12047, 2020.
Article En | MEDLINE | ID: mdl-32613076

INTRODUCTION: We aimed to define prodromal Alzheimer's disease (AD) and AD dementia using normative neuropsychological data in a large population-based cohort of adults with Down syndrome (DS). METHODS: Cross-sectional study. DS participants were classified into asymptomatic, prodromal AD and AD dementia, based on neurologist's judgment blinded to neuropsychological data (Cambridge Cognitive Examination for Older Adults with Down's syndrome [CAMCOG-DS] and modified Cued Recall Test [mCRT]). We compared the cutoffs derived from the normative data in young adults with DS to those from receiver-operating characteristic curve (ROC) analysis. RESULTS: Diagnostic performance of the CAMCOG-DS and modified Cued Recall Test (mCRT) in subjects with mild and moderate levels of intellectual disability (ID) was high, both for diagnosing prodromal AD and AD dementia (area under the curve [AUC] 0.73-0.83 and 0.90-1, respectively). The cutoffs derived from the normative data were similar to those derived from the ROC analyses. DISCUSSION: Diagnosing prodromal AD and AD dementia in DS with mild and moderate ID using population norms for neuropsychological tests is possible with high diagnostic accuracy.

12.
Lancet ; 395(10242): 1988-1997, 2020 06 27.
Article En | MEDLINE | ID: mdl-32593336

BACKGROUND: Alzheimer's disease and its complications are the leading cause of death in adults with Down syndrome. Studies have assessed Alzheimer's disease in individuals with Down syndrome, but the natural history of biomarker changes in Down syndrome has not been established. We characterised the order and timing of changes in biomarkers of Alzheimer's disease in a population of adults with Down syndrome. METHODS: We did a dual-centre cross-sectional study of adults with Down syndrome recruited through a population-based health plan in Barcelona (Spain) and through services for people with intellectual disabilities in Cambridge (UK). Cognitive impairment in participants with Down syndrome was classified with the Cambridge Cognitive Examination for Older Adults with Down Syndrome (CAMCOG-DS). Only participants with mild or moderate disability were included who had at least one of the following Alzheimer's disease measures: apolipoprotein E allele carrier status; plasma concentrations of amyloid ß peptides 1-42 and 1-40 and their ratio (Aß1-42/1-40), total tau protein, and neurofilament light chain (NFL); tau phosphorylated at threonine 181 (p-tau), and NFL in cerebrospinal fluid (CSF); and one or more of PET with 18F-fluorodeoxyglucose, PET with amyloid tracers, and MRI. Cognitively healthy euploid controls aged up to 75 years who had no biomarker abnormalities were recruited from the Sant Pau Initiative on Neurodegeneration. We used a first-order locally estimated scatterplot smoothing curve to determine the order and age at onset of the biomarker changes, and the lowest ages at the divergence with 95% CIs are also reported where appropriate. FINDINGS: Between Feb 1, 2013, and June 28, 2019 (Barcelona), and between June 1, 2009, and Dec 31, 2014 (Cambridge), we included 388 participants with Down syndrome (257 [66%] asymptomatic, 48 [12%] with prodromal Alzheimer's disease, and 83 [21%] with Alzheimer's disease dementia) and 242 euploid controls. CSF Aß1-42/1-40 and plasma NFL values changed in individuals with Down syndrome as early as the third decade of life, and amyloid PET uptake changed in the fourth decade. 18F-fluorodeoxyglucose PET and CSF p-tau changes occurred later in the fourth decade of life, followed by hippocampal atrophy and changes in cognition in the fifth decade of life. Prodromal Alzheimer's disease was diagnosed at a median age of 50·2 years (IQR 47·5-54·1), and Alzheimer's disease dementia at 53·7 years (49·5-57·2). Symptomatic Alzheimer's disease prevalence increased with age in individuals with Down syndrome, reaching 90-100% in the seventh decade of life. INTERPRETATION: Alzheimer's disease in individuals with Down syndrome has a long preclinical phase in which biomarkers follow a predictable order of changes over more than two decades. The similarities with sporadic and autosomal dominant Alzheimer's disease and the prevalence of Down syndrome make this population a suitable target for Alzheimer's disease preventive treatments. FUNDING: Instituto de Salud Carlos III, Fundació Bancaria La Caixa, Fundació La Marató de TV3, Medical Research Council, and National Institutes of Health.


Alzheimer Disease/metabolism , Biomarkers/blood , Down Syndrome/complications , Adult , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid beta-Peptides/metabolism , Amyloidosis/diagnostic imaging , Amyloidosis/pathology , Apolipoproteins E/metabolism , Case-Control Studies , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Down Syndrome/epidemiology , Down Syndrome/mortality , Down Syndrome/psychology , Fluorodeoxyglucose F18/administration & dosage , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Neurofilament Proteins/cerebrospinal fluid , Positron-Emission Tomography/methods , Prevalence , Spain/epidemiology , United Kingdom/epidemiology , tau Proteins/metabolism
13.
Neurology ; 94(19): e2026-e2036, 2020 05 12.
Article En | MEDLINE | ID: mdl-32291295

OBJECTIVE: To study the macrostructural and microstructural MRI correlates of brain astrocytosis, measured with 11C-deuterium-L-deprenyl (11C-DED)-PET, in familial autosomal-dominant Alzheimer disease (ADAD). METHODS: The total sample (n = 31) comprised ADAD mutation carriers (n = 10 presymptomatic, 39.2 ± 10.6 years old; n = 3 symptomatic, 55.5 ± 2.0 years old) and noncarriers (n = 18, 44.0 ± 13.7 years old) belonging to families with mutations in either the presenilin-1 or amyloid precursor protein genes. All participants underwent structural and diffusion MRI and neuropsychological assessment, and 20 participants (6 presymptomatic and 3 symptomatic mutation carriers and 11 noncarriers) also underwent 11C-DED-PET. RESULTS: Vertex-wise interaction analyses revealed a differential relationship between carriers and noncarriers in the association between 11C-DED binding and estimated years to onset (EYO) and between cortical mean diffusivity (MD) and EYO. These differences were due to higher 11C-DED binding in presymptomatic carriers, with lower binding in symptomatic carriers compared to noncarriers, and to lower cortical MD in presymptomatic carriers, with higher MD in symptomatic carriers compared to noncarriers. Using a vertex-wise local correlation approach, 11C-DED binding was negatively correlated with cortical MD and positively correlated with cortical thickness. CONCLUSIONS: Our proof-of-concept study is the first to show that microstructural and macrostructural changes can reflect underlying neuroinflammatory mechanisms in early stages of Alzheimer disease (AD). The findings support a role for neuroinflammation in AD pathogenesis, with potential implications for the correct interpretation of neuroimaging biomarkers as surrogate endpoints in clinical trials.


Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Adult , Amyloid beta-Protein Precursor/genetics , Brain/pathology , Carbon Radioisotopes/metabolism , Deuterium/metabolism , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Neuroimaging , Neuropsychological Tests , Positron-Emission Tomography , Presenilin-1/genetics , Prodromal Symptoms , Selegiline/metabolism
14.
Cereb Cortex ; 30(4): 2083-2098, 2020 04 14.
Article En | MEDLINE | ID: mdl-31799623

Evidence suggests that the basal forebrain (BF) cholinergic system degenerates early in the course of Alzheimer's disease (AD), likely due to the vulnerability of BF cholinergic neurons to tau pathology. However, it remains unclear whether the presence of tauopathy is the only requirement for initiating the BF degeneration in asymptomatic subjects at risk for AD (AR-AD), and how BF structural deficits evolve from normal aging to preclinical and prodromal AD. Here, we provide human in vivo magnetic resonance imaging evidence supporting that abnormal cerebrospinal fluid levels of phosphorylated tau (T+) are selectively associated with bilateral volume loss of the nucleus basalis of Meynert (nbM, Ch4) in AR-AD individuals. Spreading of atrophy to medial septum and vertical limb of diagonal band Broca (Ch1-Ch2) occurred in both preclinical and prodromal AD. With the exception of A+, all groups revealed significant correlations between volume reduction of BF cholinergic compartments and atrophy of their innervated regions. Overall, these results support the central role played by tauopathy in instigating the nbM degeneration in AR-AD individuals and the necessary coexistence of both AD proteinopathies for spreading damage to larger BF territories, thus affecting the core of the BF cholinergic projection system.


Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Basal Forebrain/diagnostic imaging , tau Proteins/cerebrospinal fluid , Aged , Atrophy , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Risk Factors
15.
Ann Clin Transl Neurol ; 6(12): 2518-2530, 2019 12.
Article En | MEDLINE | ID: mdl-31789459

OBJECTIVE: We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)-derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)-related syndromes, Alzheimer's disease (AD), and healthy controls. METHODS: We included 214 participants with CSF available recruited at two centers: 93 with FTLD-related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid ß (Aß)1-42, Aß1-40, Aß1-38, and soluble ß fragment of APP (sAPPß) were centrally analyzed. We compared CSF levels of APP-derived peptides between groups and, we studied the correlation between CSF biomarkers, cortical thickness, and domain-specific cognitive composites in each group. Then, we explored the relationship between cortical thickness, CSF levels of APP-derived peptides, and regional gene expression profile using a brain-wide regional gene expression data in combination with gene set enrichment analysis. RESULTS: The CSF levels of Aß1-40, Aß1-38, and sAPPß were lower in the FTLD-related syndromes group than in the AD and healthy controls group. CSF levels of all APP-derived peptides showed a positive correlation with cortical thickness and the executive cognitive composite in the FTLD-related syndromes group but not in the healthy control or AD groups. In the cortical regions where we observed a significant association between cortical thickness and CSF levels of APP-derived peptides, we found a reduced expression of genes related to synaptic function. INTERPRETATION: APP-derived peptides in CSF may reflect FTLD-related neurodegeneration. This observation has important implications as Aß1-42 levels are considered an indirect biomarker of cerebral amyloidosis.


Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Frontotemporal Lobar Degeneration/cerebrospinal fluid , Frontotemporal Lobar Degeneration/pathology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Amyloid beta-Protein Precursor/cerebrospinal fluid , Female , Frontotemporal Lobar Degeneration/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid
16.
Alzheimers Dement (N Y) ; 5: 597-609, 2019.
Article En | MEDLINE | ID: mdl-31650016

INTRODUCTION: The SPIN (Sant Pau Initiative on Neurodegeneration) cohort is a multimodal biomarker platform designed for neurodegenerative disease research following an integrative approach. METHODS: Participants of the SPIN cohort provide informed consent to donate blood and cerebrospinal fluid samples, receive detailed neurological and neuropsychological evaluations, and undergo a structural 3T brain MRI scan. A subset also undergoes other functional or imaging studies (video-polysomnogram, 18F-fluorodeoxyglucose PET, amyloid PET, Tau PET). Participants are followed annually for a minimum of 4 years, with repeated cerebrospinal fluid collection and imaging studies performed every other year, and brain donation is encouraged. RESULTS: The integration of clinical, neuropsychological, genetic, biochemical, imaging, and neuropathological information and the harmonization of protocols under the same umbrella allows the discovery and validation of key biomarkers across several neurodegenerative diseases. DISCUSSION: We describe our particular 10-year experience and how different research projects were unified under an umbrella biomarker program, which might be of help to other research teams pursuing similar approaches.

17.
Ann Clin Transl Neurol ; 6(9): 1815-1824, 2019 09.
Article En | MEDLINE | ID: mdl-31464088

OBJECTIVE: To determine the cutoffs that optimized the agreement between 18 F-Florbetapir positron emission tomography (PET) and Aß1-42, Aß1-40, tTau, pTau and their ratios measured in cerebrospinal fluid (CSF) on the LUMIPULSE G600II instrument, we quantified the levels of these four biomarkers in 94 CSF samples from participants of the Sant Pau Initiative on Neurodegeneration (SPIN cohort) using the Lumipulse G System with available 18 F-Florbetapir imaging. METHODS: Participants had mild cognitive impairment (n = 35), AD dementia (n = 12), other dementias or neurodegenerative diseases (n = 41), or were cognitively normal controls (n = 6). Levels of Aß1-42 were standardized to certified reference material. Amyloid scans were assessed visually and through automated quantification. We determined the cutoffs of CSF biomarkers that optimized their agreement with 18 F-Florbetapir PET and evaluated concordance between markers of the amyloid category. RESULTS: Aß1-42, tTau and pTau (but not Aß1-40) and the ratios with Aß1-42 had good diagnostic agreement with 18 F-Florbetapir PET. As a marker of amyloid pathology, the Aß1-42/Aß1-40 ratio had higher agreement and better correlation with amyloid PET than Aß1-42 alone. INTERPRETATION: CSF biomarkers measured with the Lumipulse G System show good agreement with amyloid imaging in a clinical setting with heterogeneous presentations of neurological disorders. Combination of Aß1-42 with Aß1-40 increases the agreement between markers of amyloid pathology.


Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Brain/diagnostic imaging , Cognitive Dysfunction/diagnosis , Dementia/diagnosis , Plaque, Amyloid/diagnostic imaging , tau Proteins/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/metabolism , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/metabolism , Dementia/cerebrospinal fluid , Dementia/metabolism , Female , Humans , Male , Middle Aged , Plaque, Amyloid/metabolism , Positron-Emission Tomography
18.
Sci Rep ; 9(1): 7803, 2019 05 24.
Article En | MEDLINE | ID: mdl-31127154

The role of innate immunity in dementia with Lewy bodies (DLB) has been little studied. We investigated the levels in cerebrospinal fluid (CSF) of glial proteins YKL-40, soluble TREM2 (sTREM2) and progranulin in DLB and their relationship with Alzheimer's disease (AD) biomarkers. We included patients with DLB (n = 37), prodromal DLB (prodDLB, n = 23), AD dementia (n = 50), prodromal AD (prodAD, n = 53), and cognitively normal subjects (CN, n = 44). We measured levels of YKL-40, sTREM2, progranulin, Aß1-42, total tau (t-tau) and phosphorylated tau (p-tau) in CSF. We stratified the group DLB according to the ratio t-tau/Aß1-42 (≥0.52, indicative of AD pathology) and the A/T classification. YKL-40, sTREM2 and progranulin levels did not differ between DLB groups and CN. YKL-40 levels were higher in AD and prodAD compared to CN and to DLB and prodDLB. Patients with DLB with a CSF profile suggestive of AD copathology had higher levels of YKL-40, but not sTREM2 or PGRN, than those without. T+ DLB patients had also higher YKL-40 levels than T-. Of these glial markers, only YKL-40 correlated with t-tau and p-tau in DLB and in prodDLB. In contrast, in prodAD, sTREM2 and PGRN also correlated with t-tau and p-tau. In conclusion, sTREM2 and PGRN are not increased in the CSF of DLB patients. YKL-40 is only increased in DLB patients with an AD biomarker profile, suggesting that the increase is driven by AD-related neurodegeneration. These data suggest a differential glial activation between DLB and AD.


Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Chitinase-3-Like Protein 1/cerebrospinal fluid , Female , Humans , Lewy Body Disease/pathology , Male , Membrane Glycoproteins/cerebrospinal fluid , Middle Aged , Neuroglia/pathology , Peptide Fragments/cerebrospinal fluid , Progranulins/cerebrospinal fluid , Receptors, Immunologic
19.
Brain ; 142(4): 1121-1133, 2019 04 01.
Article En | MEDLINE | ID: mdl-30906945

Cortical mean diffusivity has been proposed as a novel biomarker for the study of the cortical microstructure in Alzheimer's disease. In this multicentre study, we aimed to assess the cortical microstructural changes in the behavioural variant of frontotemporal dementia (bvFTD); and to correlate cortical mean diffusivity with clinical measures of disease severity and CSF biomarkers (neurofilament light and the soluble fraction beta of the amyloid precursor protein). We included 148 participants with a 3 T MRI and appropriate structural and diffusion weighted imaging sequences: 70 patients with bvFTD and 78 age-matched cognitively healthy controls. The modified frontotemporal lobar degeneration clinical dementia rating was obtained as a measure of disease severity. A subset of patients also underwent a lumbar puncture for CSF biomarker analysis. Two independent raters blind to the clinical data determined the presence of significant frontotemporal atrophy to dichotomize the participants into possible or probable bvFTD. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. We compared cortical thickness and cortical mean diffusivity between bvFTD (both using the whole sample and probable and possible bvFTD subgroups) and controls. Then we computed the Cohen's d effect size for both cortical thickness and cortical mean diffusivity. We also performed correlation analyses with the modified frontotemporal lobar degeneration clinical dementia rating score and CSF neuronal biomarkers. The cortical mean diffusivity maps, in the whole cohort and in the probable bvFTD subgroup, showed widespread areas with increased cortical mean diffusivity that partially overlapped with cortical thickness, but further expanded to other bvFTD-related regions. In the possible bvFTD subgroup, we found increased cortical mean diffusivity in frontotemporal regions, but only minimal loss of cortical thickness. The effect sizes of cortical mean diffusivity were notably higher than the effect sizes of cortical thickness in the areas that are typically involved in bvFTD. In the whole bvFTD group, both cortical mean diffusivity and cortical thickness correlated with measures of disease severity and CSF biomarkers. However, the areas of correlation with cortical mean diffusivity were more extensive. In the possible bvFTD subgroup, only cortical mean diffusivity correlated with the modified frontotemporal lobar degeneration clinical dementia rating. Our data suggest that cortical mean diffusivity could be a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in bvFTD. Further longitudinal studies should determine the diagnostic and prognostic utility of this novel neuroimaging biomarker.


Alzheimer Disease/pathology , Atrophy/pathology , Frontotemporal Dementia/pathology , Aged , Brain/pathology , Cohort Studies , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , White Matter/pathology
20.
Oncotarget ; 9(78): 34691-34698, 2018 Oct 05.
Article En | MEDLINE | ID: mdl-30410669

Mid-life obesity is an established risk factor for Alzheimer's disease (AD) dementia, whereas late-life obesity has been proposed as a protective state. Weight loss, which predates cognitive decline, might explain this obesity paradox on AD risk. We aimed to assess the impact of late life obesity on brain structure taking into account weight loss as a potential confounder. We included 162 elderly controls of the Alzheimer's Disease Neuroimaging Initiative (ADNI) with available 3T MRI scan. Significant weight loss was defined as relative weight loss ≥5% between the baseline and last follow-up visit. To be able to capture weight loss, only subjects with a minimum clinical and anthropometrical follow-up of 12 months were included. Individuals were categorized into three groups according to body mass index (BMI) at baseline: normal-weight (BMI<25 Kg/m2), overweight (BMI 25-30 Kg/m2) and obese (BMI>30 Kg/m2). We performed both an interaction analysis between obesity and weight loss, and stratified group analyses in the weight-stable and weigh-loss groups. We found a significant interaction between BMI and weight loss affecting brain structure in widespread cortical areas. The stratified analyses showed atrophy in occipital, inferior temporal, precuneus and frontal regions in the weight stable group, but increased cortical thickness in the weight-loss group. In conclusion, our data support that weight loss negatively confounds the association between late-life obesity and brain atrophy. The obesity paradox on AD risk might be explained by reverse causation.

...