Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Acta Neuropathol Commun ; 9(1): 145, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34454616

ABSTRACT

Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt-Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


Subject(s)
Creutzfeldt-Jakob Syndrome/epidemiology , Creutzfeldt-Jakob Syndrome/pathology , Encephalopathy, Bovine Spongiform/epidemiology , Encephalopathy, Bovine Spongiform/pathology , Human Growth Hormone/adverse effects , PrPSc Proteins/adverse effects , Adult , Animals , Cohort Studies , Creutzfeldt-Jakob Syndrome/transmission , Encephalopathy, Bovine Spongiform/transmission , Female , France/epidemiology , Human Growth Hormone/administration & dosage , Humans , Male , Mice , Mice, Transgenic , Middle Aged , PrPSc Proteins/administration & dosage , PrPSc Proteins/isolation & purification , United Kingdom/epidemiology
2.
Acta Neuropathol ; 141(3): 383-397, 2021 03.
Article in English | MEDLINE | ID: mdl-33532912

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt-Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.


Subject(s)
Creutzfeldt-Jakob Syndrome/transmission , PrPSc Proteins , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Middle Aged
3.
mBio ; 11(3)2020 06 16.
Article in English | MEDLINE | ID: mdl-32546613

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently classified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K-digested abnormal prion protein (PrPres) isoform identified by Western blotting (type 1 or type 2). Converging evidence led to the view that MM/MV1, VV/MV2, and VV1 and MM2 sCJD cases are caused by distinct prion strains. However, in a significant proportion of sCJD patients, both type 1 and type 2 PrPres were reported to accumulate in the brain, which raised questions about the diversity of sCJD prion strains and the coexistence of two prion strains in the same patient. In this study, a panel of sCJD brain isolates (n = 29) that displayed either a single or mixed type 1/type 2 PrPres were transmitted into human-PrP-expressing mice (tgHu). These bioassays demonstrated that two distinct prion strains (M1CJD and V2CJD) were associated with the development of sCJD in MM1/MV1 and VV2/MV2 patients. However, in about 35% of the investigated VV and MV cases, transmission results were consistent with the presence of both M1CJD and V2CJD strains, including in patients who displayed a "pure" type 1 or type 2 PrPres The use of a highly sensitive prion in vitro amplification technique that specifically probes the V2CJD strain revealed the presence of the V2CJD prion in more than 80% of the investigated isolates, including isolates that propagated as a pure M1CJD strain in tgHu. These results demonstrate that at least two sCJD prion strains can be present in a single patient.IMPORTANCE sCJD occurrence is currently assumed to result from spontaneous and stochastic formation of a misfolded PrP nucleus in the brains of affected patients. This original nucleus then recruits and converts nascent PrPC into PrPSc, leading to the propagation of prions in the patient's brain. Our study demonstrates the coexistence of two prion strains in the brains of a majority of the 23 sCJD patients investigated. The relative proportion of these sCJD strains varied both between patients and between brain areas in a single patient. These findings strongly support the view that the replication of an sCJD prion strain in the brain of a patient can result in the propagation of different prion strain subpopulations. Beyond its conceptual importance for our understanding of prion strain properties and evolution, the sCJD strain mixture phenomenon and its frequency among patients have important implications for the development of therapeutic strategies for prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome/transmission , Genetic Variation , Prions/genetics , Animals , Biological Assay , Brain/pathology , Cell Line , Codon , Female , Humans , Methionine/genetics , Mice , PrPSc Proteins/genetics , Prions/classification , Protein Isoforms , Valine/genetics
4.
Cell Mol Life Sci ; 75(14): 2575, 2018 07.
Article in English | MEDLINE | ID: mdl-29907937

ABSTRACT

In the original publication, part of acknowledgement text was missing. The complete acknowledgement section should read as follows.

5.
Cell Mol Life Sci ; 75(14): 2557-2574, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29761205

ABSTRACT

Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.


Subject(s)
Prions/metabolism , Animals , Extracellular Vesicles/metabolism , Humans , Nanotubes , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prion Diseases/etiology , Protein Aggregates , Protein Folding , Protein Transport
6.
Methods Mol Biol ; 1658: 95-104, 2017.
Article in English | MEDLINE | ID: mdl-28861785

ABSTRACT

Cultured cells are valuable models to study prion infections at the cellular level. Unfortunately, the vast majority of cell lines are resistant to the propagation of prion agents. The rabbit epithelial RK13 cell line is among the few cell lines permissive to prion infection. When genetically engineered to express heterologous PrP proteins, RK13 cells become permissive to several strains of prions from various animal species. Here, we describe the generation of stable RK13 cell clones expressing a heterologous PrP protein in an inducible manner, the establishment and maintenance of chronically infected cultures, and the selection of cell clones suitable for cell-based titration of prions.


Subject(s)
Epithelial Cells/metabolism , Founder Effect , Immunoblotting/methods , PrPSc Proteins/genetics , Animals , Brain/metabolism , Brain/pathology , Cell Culture Techniques , Cell Line , Clone Cells , Cloning, Molecular , Endopeptidase K/chemistry , Epithelial Cells/pathology , Gene Expression , Humans , Mice , Plasmids/chemistry , Plasmids/metabolism , PrPSc Proteins/chemistry , PrPSc Proteins/metabolism , Protein Folding , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Methods Mol Biol ; 1545: 153-176, 2017.
Article in English | MEDLINE | ID: mdl-27943213

ABSTRACT

Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40-120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 µm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.


Subject(s)
Cell Fractionation/methods , Cell-Derived Microparticles/metabolism , Exosomes/metabolism , Prion Diseases/transmission , Prions/metabolism , Animals , Cells, Cultured , Mice , PrPC Proteins/metabolism , PrPSc Proteins/metabolism
8.
Sci Rep ; 6: 29116, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27384922

ABSTRACT

Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.


Subject(s)
Biochemistry/methods , Prions/metabolism , Protein Folding , Animals , Brain/metabolism , Cell Extracts , Cell Line , Cells, Cultured , Electrophoresis , Gene Knockout Techniques , Glycosylation , Humans , Mice, Transgenic , Microspheres , Miniaturization , Mutant Proteins/metabolism , Time Factors
9.
J Virol ; 90(3): 1638-46, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26608316

ABSTRACT

UNLABELLED: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE: Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


Subject(s)
Mutant Proteins/genetics , Mutant Proteins/metabolism , PrPC Proteins/genetics , PrPC Proteins/metabolism , Prion Diseases/pathology , Animals , Disease Models, Animal , Mice, Transgenic , Mutation, Missense , Sequence Deletion , Sheep
10.
Cell Mol Life Sci ; 72(22): 4409-27, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26047659

ABSTRACT

Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Exosomes/genetics , Prions/genetics , Signal Transduction/genetics , Aniline Compounds/pharmacology , Animals , Benzylidene Compounds/pharmacology , Cell Line , Cell Line, Tumor , Ceramides/metabolism , DNA-Binding Proteins/genetics , Exosomes/metabolism , Exosomes/ultrastructure , Humans , Immunoblotting , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , Prions/metabolism , Protein Transport/drug effects , Protein Transport/genetics , RNA Interference , Rabbits , Sheep , Transcription Factors/genetics
11.
Cell Mol Life Sci ; 72(6): 1185-96, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25227242

ABSTRACT

Cell-to-cell transfer of prions is a crucial step in the spreading of prion infection through infected tissue. At the cellular level, several distinct pathways including direct cell-cell contacts and release of various types of infectious extracellular vesicles have been described that may potentially lead to infection of naïve cells. The relative contribution of these pathways and whether they may vary depending on the prion strain and/or on the infected cell type are not yet known. In this study we used a single cell type (RK13) infected with three different prion strains. We showed that in each case, most of the extracellular prions resulted from active cell secretion through the exosomal pathway. Further, quantitative analysis of secreted infectivity indicated that the proportion of prions eventually secreted was dramatically dependent on the prion strain. Our data also highlight that infectious exosomes secreted from cultured cells might represent a biologically pertinent material for spiking experiments. Also discussed is the appealing possibility that abnormal PrP from different prion strains may differentially interact with the cellular machinery to promote secretion.


Subject(s)
Exosomes/metabolism , Prion Diseases/metabolism , Prions/metabolism , Animals , Clone Cells , Mice , Rabbits , Sheep
12.
PLoS One ; 9(8): e104287, 2014.
Article in English | MEDLINE | ID: mdl-25122456

ABSTRACT

Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods--in vitro, ex vivo and in vivo assays--to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA) and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages). However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.


Subject(s)
Biological Assay/methods , Leukocytes/chemistry , Prions/pathogenicity , Scrapie/diagnosis , Animals , Asymptomatic Infections , Cerebellum/metabolism , Mice , Mice, Transgenic , PrPSc Proteins/metabolism , Scrapie/metabolism , Sheep/metabolism
13.
PLoS Pathog ; 10(6): e1004202, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24945656

ABSTRACT

The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.


Subject(s)
Creutzfeldt-Jakob Syndrome/diagnosis , Encephalopathy, Bovine Spongiform/diagnosis , Hematologic Tests/methods , Prions/blood , Amino Acid Sequence , Animals , Cattle , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/transmission , Early Diagnosis , Encephalopathy, Bovine Spongiform/blood , Encephalopathy, Bovine Spongiform/transmission , Humans , Macaca fascicularis , Male , Sheep , Swine
14.
PLoS Pathog ; 8(6): e1002782, 2012.
Article in English | MEDLINE | ID: mdl-22737075

ABSTRACT

It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 10³ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 10³·6ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation.


Subject(s)
Leukocyte Transfusion/adverse effects , PrPSc Proteins/blood , Prion Diseases/blood , Prion Diseases/transmission , Animals , Blotting, Western , Cell Survival , Disease Models, Animal , Immunohistochemistry , Leukocytes , Mice , Mice, Transgenic , Sheep
15.
J Virol ; 86(4): 2056-66, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156536

ABSTRACT

The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.


Subject(s)
Blood Platelets/virology , Disease Models, Animal , Leukocytes, Mononuclear/virology , Mice , Prion Diseases/veterinary , Prion Diseases/virology , Scrapie/virology , Animals , Humans , Mice, Transgenic , Prion Diseases/transmission , Scrapie/transmission , Sheep
16.
PLoS One ; 6(5): e20563, 2011.
Article in English | MEDLINE | ID: mdl-21655184

ABSTRACT

Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.


Subject(s)
Biological Assay/methods , Prions/analysis , Animals , Cell Line , Immunoblotting , Mice , Mice, Transgenic , Sheep
17.
Prion ; 5(2): 84-7, 2011.
Article in English | MEDLINE | ID: mdl-21597318

ABSTRACT

Protein misfolding is central to the pathogenesis of several neurodegenerative disorders. Among these disorders, prion diseases are unique because they are transmissible. The conversion of the host-encoded GPI-anchored PrP protein into a structurally altered form is crucially associated with the infectious and neurotoxic properties of the resulting abnormal PrP. Many lines of evidence indicate that distinct aggregated forms with different size and protease resistance are produced during prion multiplication. The recent isolation of various subsets of abnormal PrP, along with the improved biochemical tools and infectivity detection assays have shed light on the diversity of abnormal PrP protein and may give insights into the features of the more infectious subsets of abnormal PrP.


Subject(s)
Prion Diseases/metabolism , Prions/metabolism , Animals , Humans , Mammals , Prion Diseases/pathology , Protein Folding
18.
J Biol Chem ; 286(10): 8141-8148, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21212268

ABSTRACT

Prion diseases are characterized by deposits of abnormal conformers of the PrP protein. Although large aggregates of proteinase K-resistant PrP (PrP(res)) are infectious, the precise relationships between aggregation state and infectivity remain to be established. In this study, we have fractionated detergent lysates from prion-infected cultured cells by differential ultracentrifugation and ultrafiltration and have characterized a previously unnoticed PrP species. This abnormal form is resistant to proteinase K digestion but, in contrast to typical aggregated PrP(res), remains in the soluble fraction at intermediate centrifugal forces and is not retained by filters of 300-kDa cutoff. Cell-based assay and inoculation to animals demonstrate that these entities are infectious. The finding that cell-derived small infectious PrP(res) aggregates can be recovered in the absence of strong in vitro denaturating treatments now gives a biological basis for investigating the role of small PrP aggregates in the pathogenicity and/or the multiplication cycle of prions.


Subject(s)
PrPSc Proteins , Prion Diseases/metabolism , Animals , Cell Line , Humans , Mice , Mice, Transgenic , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , PrPSc Proteins/isolation & purification , PrPSc Proteins/metabolism , PrPSc Proteins/pathogenicity , Prion Diseases/genetics , Sheep
19.
J Virol ; 84(5): 2444-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20032176

ABSTRACT

Mouse bioassay remains the gold standard for determining proof of infectivity, strain type, and infectious titer estimation in prion disease research. The development of an approach using ex vivo cell-based assays remains an attractive alternative, both in order to reduce the use of mice and to hasten results. The main limitation of a cell-based approach is the scarcity of cell lines permissive to infection with natural transmissible spongiform encephalopathy strains. This study combines two advances in this area, namely, the standard scrapie cell assay (SSCA) and the Rov9 and MovS6 cell lines, which both express the ovine PrP VRQ allele, to assess to what extent natural and experimental ovine scrapie can be detected ex vivo. Despite the Rov9 and MovS6 cell lines being of different biological origin, they were both permissive and resistant to infection with the same isolates of natural sheep scrapie as detected by SSCA. Rov9 subclones that are 20 times more sensitive than Rov9 to SSBP/1-like scrapie infection were isolated, but all the subclones maintained their resistance to isolates that failed to transmit to the parental line. The most sensitive subclone of the Rov9 cell line was used to estimate the infectious titer of a scrapie brain pool (RBP1) and proved to be more sensitive than the mouse bioassay using wild-type mice. Increasing the sensitivity of the Rov9 cell line to SSBP/1 infection did not correlate with broadening susceptibility, as the specificity of permissiveness and resistance to other scrapie isolates was maintained.


Subject(s)
Biological Assay/methods , Cell Line , PrPSc Proteins/metabolism , Scrapie/metabolism , Animals , Female , Male , Mice , PrPC Proteins/genetics , PrPC Proteins/metabolism , PrPSc Proteins/genetics , PrPSc Proteins/pathogenicity , Scrapie/genetics , Sensitivity and Specificity , Sheep , Sheep Diseases/genetics , Sheep Diseases/metabolism
20.
PLoS One ; 3(5): e2174, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18478094

ABSTRACT

BACKGROUND: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. CONCLUSION/SIGNIFICANCE: 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity.


Subject(s)
Guanabenz/pharmacology , Prions/drug effects , Protein Folding , RNA, Ribosomal/physiology , Blotting, Western , Cell Line , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , RNA, Ribosomal/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL