Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 17(11): e0273872, 2022.
Article in English | MEDLINE | ID: mdl-36413547

ABSTRACT

Malaria rapid diagnostic tests (RDTs) have been evaluated in the Peruvian Amazon region and their performance has been variable. This region is known for being the first with documented evidence of wild Plasmodium falciparum parasites lacking pfhrp2 and pfhrp3 genes, leading to false-positive results with HRP2-based RDTs. In our attempt to further characterize the deletion pattern of these genes and their evolutionary relationship, 93 P. falciparum samples, collected in different communities from the Peruvian Amazon region between 2009 and 2010, were analyzed in this study. Genomic DNA was used to amplify 18S rRNA, pfmsp2 and pfglurp to confirm the diagnosis and DNA quality, respectively; pfhrp2, pfhrp3, and their flanking genes were amplified by PCR to assess the pattern of the gene deletions. In addition, microsatellite analysis were performed using seven neutral microsatellites (MS) and five microsatellite loci flanking pfhrp2. The data showed the absence of pfhrp3 gene in 53.76% (50/93) of the samples, reflecting a higher frequency than the proportion of pfhrp2 gene deletions (33.33%; 31/93). Among the flanking genes, the highest frequency of deletion was observed in the PF3D7_0831900 gene (78.49%; 73/93) for pfhrp2. MS marker analysis showed the presence of 8 P. falciparum lineages. The lineage Bv1 was the most prevalent among parasites lacking pfhrp2 and pfhrp3 genes. Additionally, using MS flanking pfhrp2 gene, the haplotypes α and δ were found to be the most abundant in this region. This study confirms the presence in this area of field isolates with deletions in either pfhrp2, pfhrp3, or both genes, along with their respective flanking regions. Our data suggest that some pfhrp2/pfhrp3 deletion haplotypes, in special the lineage Bv1, are widely dispersed within the Peruvian Amazon. The persistence of these haplotypes ensures a proportion of P.falciparum parasites lacking the pfhrp2/pfhrp3 genes in this area, which ultimately leads to false-negative results on PfHRP2-detecting malaria RDTs. However, additional studies are needed to not only confirm this hypothesis but also to further delineate the origin and genetic basis for the pfhrp2- and pfhrp3 gene deletions in wild P. falciparum parasites.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Antigens, Protozoan/genetics , Protozoan Proteins/genetics , Peru , Gene Deletion , Malaria, Falciparum/diagnosis
2.
Am J Trop Med Hyg ; 107(4_Suppl): 168-181, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228921

ABSTRACT

The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/physiology , Biology , Brazil/epidemiology , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors/physiology , Peru/epidemiology
3.
Front Cell Infect Microbiol ; 12: 901423, 2022.
Article in English | MEDLINE | ID: mdl-36118037

ABSTRACT

Introduction: Herein, we tested the hypothesis that Asymptomatic P. vivax (Pv) infected individuals (Asym) feature different epidemiological, clinical and biochemical characteristics, as well as hematological parameters, potentially predictive of clinical immunity in comparison to symptomatic Pv infected individuals (Sym). Methodology: Between 2018 - 2021, we conducted 11 population screenings (PS, Day 0 (D0)) in 13 different riverine communities around Iquitos city, in the Peruvian Amazon, to identify Pv Sym and Asym individuals. A group of these individuals agreed to participate in a nested case - control study to evaluate biochemical and hematological parameters. Pv Asym individuals did not present common malaria symptoms (fever, headache, and chills), had a positive/negative microscopy result, a positive qPCR result, reported no history of antimalarial treatment during the last month, and were followed-up weekly until Day 21 (D21). Control individuals, had a negative malaria microscopy and qPCR result, no history of antimalarial treatment or malaria infections during the last three years, and no history of comorbidities or chronic infections. Results: From the 2159 individuals screened during PS, data revealed a low but heterogeneous Pv prevalence across the communities (11.4%), where most infections were Asym (66.7%) and submicroscopic (82.9%). A total of 29 Asym, 49 Sym, and 30 control individuals participated in the nested case - control study (n=78). Ten of the individuals that were initially Asym at D0, experienced malaria symptoms during follow up and therefore, were included in the Sym group. 29 individuals remained Asym throughout all follow-ups. High levels of eosinophils were found in Asym individuals in comparison to Sym and controls. Conclusion: For the first-time, key epidemiological, hematological, and biochemical features are reported from Pv Asym infections from the Peruvian Amazon. These results should be considered for the design and reshaping of malaria control measures as the country moves toward malaria elimination.


Subject(s)
Malaria, Vivax , Malaria , Asymptomatic Infections/epidemiology , Humans , Malaria, Vivax/epidemiology , Peru/epidemiology , Prevalence
4.
Pathogens ; 10(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801386

ABSTRACT

The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72-0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67-0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74-0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.

5.
Malar J ; 18(1): 327, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547821

ABSTRACT

BACKGROUND: Different antigens are needed to characterize Plasmodium falciparum infection in terms of seroreactivity and targets for invasion inhibition, in order to guide and identify the proper use of such proteins as tools for the development of serological markers and/or as vaccine candidates. METHODS: IgG responses in 84 serum samples from individuals with P. falciparum infection [classified as symptomatic (Sym) or asymptomatic (Asym)], or acute Plasmodium vivax infection, from the Peruvian Amazon region, were evaluated by enzyme-linked immunosorbent assays specific for a baculovirus-produced recombinant protein P. falciparum Merozoite Surface Protein 10 (rMSP10) and for non-EGF region selected peptides of PfMSP10 selected by a bioinformatics tool (PfMSP10-1, PfMSP10-2 and PfMSP10-3). Monoclonal antibodies against the selected peptides were evaluated by western blotting, confocal microscopy and inhibition invasion assays. RESULTS: Seroreactivity analysis of the P. falciparum Sym- and Asym-infected individuals against rMSP10 showed a higher response as compared to the individuals with P. vivax acute infection. IgG responses against peptide PfMSP10-1 were weak. Interestingly high IgG response was found against peptide PfMSP10-2 and the combination of peptides PfMSP10-1 + PfMSP10-2. Monoclonal antibodies were capable of detecting native PfMSP10 on purified schizonts by western blot and confocal microscopy. A low percentage of inhibition of merozoite invasion of erythrocytes in vitro was observed when the monoclonal antibodies were compared with the control antibody against AMA-1 antigen. Further studies are needed to evaluate the role of PfMSP10 in the merozoite invasion. CONCLUSIONS: The rMSP10 and the PfMSP10-2 peptide synthesized for this study may be useful antigens for evaluation of P. falciparum malaria exposure in Sym and Asym individuals from the Peruvian Amazon region. Moreover, these antigens can be used for further investigation of the role of this protein in other malaria-endemic areas.


Subject(s)
Antigens, Protozoan/analysis , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Population Surveillance/methods , Protozoan Proteins/analysis , Humans , Peru , Seroepidemiologic Studies
6.
Malar J ; 13: 108, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24642188

ABSTRACT

BACKGROUND: Previous data have suggested that regulatory T cells (Tregs) balance protective immune responses with immune mediated pathology in malaria. This study aimed to determine to test the hypothesis that Treg proportions or absolute levels are associated with parasitaemia and malaria symptoms. METHODS: Treg cells were quantified by flow cytometry as CD4+ CD25+, Foxp3+, CD127(low) T cells. Three patient groups were assessed: patients with symptomatic Plasmodium falciparum malaria (S), subjects with asymptomatic P. falciparum parasitaemia (AS) and uninfected control individuals (C). RESULTS: S, AS and C groups had similar absolute numbers and percentage of Tregs (3.9%, 3.5% and 3.5% respectively). Levels of parasitaemia were not associated with Treg percentage (p = 0.47). CONCLUSION: Neither relative nor absolute regulatory T cell numbers were found to be associated with malaria-related symptomatology in this study. Immune mechanisms other than Tregs are likely to be responsible for the state of asymptomatic P. falciparum parasitaemia in the Peruvian Amazon; but further study to explore these mechanisms is needed.


Subject(s)
Malaria, Falciparum/immunology , Parasitemia/immunology , Plasmodium falciparum/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Asymptomatic Diseases , Child , Female , Flow Cytometry , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Parasitemia/parasitology , Peru , Young Adult
7.
Malar J ; 11: 361, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23110555

ABSTRACT

BACKGROUND: Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturally acquired immunity and immunity generated by parasite blood stage vaccine candidates. The hypotheses tested in this study were 1) that antibody responses against specific P. falciparum invasion ligands (EBL and PfRh) differ between symptomatic and asymptomatic individuals living in the low-transmission region of the Peruvian Amazon and 2), such antibody responses might have an association, either direct or indirect, with clinical immunity observed in asymptomatically parasitaemic individuals. METHODS: ELISA was used to assess antibody responses (IgG, IgG1 and IgG3) against recombinant P. falciparum invasion ligands of the EBL (EBA-175, EBA-181, EBA-140) and PfRh families (PfRh1, PfRh2a, PfRh2b, PfRh4 and PfRh5) in 45 individuals infected with P. falciparum from Peruvian Amazon. Individuals were classified as having symptomatic malaria (N=37) or asymptomatic infection (N=8). RESULTS: Antibody responses against both EBL and PfRh family proteins were significantly higher in asymptomatic compared to symptomatic individuals, demonstrating an association with clinical immunity. Significant differences in the total IgG responses were observed with EBA-175, EBA-181, PfRh2b, and MSP119 (as a control). IgG1 responses against EBA-181, PfRh2a and PfRh2b were significantly higher in the asymptomatic individuals. Total IgG antibody responses against PfRh1, PfRh2a, PfRh2b, PfRh5, EBA-175, EBA-181 and MSP119 proteins were negatively correlated with level of parasitaemia. IgG1 responses against EBA-181, PfRh2a and PfRh2b and IgG3 response for PfRh2a were also negatively correlated with parasitaemia. CONCLUSIONS: These data suggest that falciparum malaria patients who develop clinical immunity (asymptomatic parasitaemia) in a low transmission setting such as the Peruvian Amazon have antibody responses to defined P. falciparum invasion ligand proteins higher than those found in symptomatic (non-immune) patients. While these findings will have to be confirmed by larger studies, these results are consistent with a potential role for one or more of these invasion ligands as a component of an anti-P. falciparum vaccine in low-transmission malaria-endemic regions.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Child , Erythrocytes/parasitology , Female , Humans , Immunoglobulin G/blood , Ligands , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Middle Aged , Models, Immunological , Parasitemia/blood , Parasitemia/immunology , Parasitemia/parasitology , Peru , Plasmodium falciparum/pathogenicity , Protozoan Proteins/immunology , Young Adult
8.
PLoS One ; 7(10): e47913, 2012.
Article in English | MEDLINE | ID: mdl-23118907

ABSTRACT

Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five members of the PfRh (PfRh1, PfRh2a, PfRh2b, PfRh4, PfRh5) families were determined. We found that most P. falciparum field isolates from Colombia and Peru invade RBCs through an atypical invasion pathway phenotypically characterized as resistant to all enzyme treatments (NrTrCr). Moreover, the invasion pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant, the PfRh5 variant 1 and EBA-181 RVNKN variant. The ebl and Pfrh expression levels in a field isolate displaying the NrTrCr profile also pointed to PfRh2a, PfRh5 and EBA-181 as being possibly the major players in this invasion pathway. Notably, our studies demonstrate the uniqueness of the Peruvian P. falciparum field isolates in terms of their invasion profiles and ligand polymorphisms, and present a unique opportunity for studying the ability of P. falciparum parasites to expand their invasion repertoire after being reintroduced to human populations. The present study is directly relevant to asexual blood stage vaccine design focused on invasion pathway proteins, suggesting that regional invasion variants and global geographical variation are likely to preclude a simple one size fits all type of vaccine.


Subject(s)
Erythrocytes , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Erythrocytes/cytology , Erythrocytes/immunology , Erythrocytes/parasitology , Humans , Ligands , Malaria Vaccines/immunology , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Phenotype , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Polymorphism, Genetic , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Reticulocytes/metabolism , Reticulocytes/parasitology , South America
SELECTION OF CITATIONS
SEARCH DETAIL