Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Neurochem ; 167(2): 296-317, 2023 Oct.
Article En | MEDLINE | ID: mdl-37753846

Mutations in PARK15, which encodes for the F-box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase-positive or glutamatergic forebrain neurons leads to late-onset or early-onset motor dysfunction, respectively. In this study, we examined NEX-Cre;Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX-Cre;Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control.

2.
iScience ; 26(7): 107044, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37426342

Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.

3.
Nat Commun ; 11(1): 4885, 2020 09 28.
Article En | MEDLINE | ID: mdl-32985503

Parkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.


Bridged-Ring Compounds/administration & dosage , Dopaminergic Neurons/drug effects , Organophosphates/administration & dosage , Parkinson Disease/drug therapy , Protective Agents/administration & dosage , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Humans , Male , Mice , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Aggregates/drug effects , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Cell Rep ; 29(4): 920-931.e7, 2019 10 22.
Article En | MEDLINE | ID: mdl-31644913

Parkinson's disease (PD) is characterized by the death of dopamine neurons in the substantia nigra pars compacta (SNc) and accumulation of α-synuclein. Impaired autophagy has been implicated and activation of autophagy proposed as a treatment strategy. We generate a human α-synuclein-expressing mouse model of PD with macroautophagic failure in dopamine neurons to understand the interaction between impaired macroautophagy and α-synuclein. We find that impaired macroautophagy generates p62-positive inclusions and progressive neuron loss in the SNc. Despite this parkinsonian pathology, motor phenotypes accompanying human α-synuclein overexpression actually improve with impaired macroautophagy. Real-time fast-scan cyclic voltammetry reveals that macroautophagy impairment in dopamine neurons increases evoked extracellular concentrations of dopamine, reduces dopamine uptake, and relieves paired-stimulus depression. Our findings show that impaired macroautophagy paradoxically enhances dopamine neurotransmission, improving movement while worsening pathology, suggesting that changes to dopamine synapse function compensate for and conceal the underlying PD pathogenesis, with implications for therapies that target autophagy.


Autophagy , Dopaminergic Neurons/metabolism , Parkinson Disease/metabolism , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Dopamine/metabolism , Humans , Mice , Mice, Inbred C57BL , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Substantia Nigra/physiopathology , Synaptic Transmission , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
J Neurosci ; 39(28): 5606-5626, 2019 07 10.
Article En | MEDLINE | ID: mdl-31085610

Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin-proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells. In our study, we examined how the E3 ubiquitin ligase FBXO7-SCF (SKP1, Cul1, F-box protein) expressed in myelinating cells affects the axon-myelin unit. Deletion of Fbxo7 in oligodendrocytes and Schwann cells in mice using the Cnp1-Cre driver line led to motor impairment due to hindlimb paresis. It did not result in apoptosis of myelinating cells, nor did it affect the proper myelination of axons or lead to demyelination. It however triggered axonal degeneration in the CNS and resulted in the severe degeneration of axons in the PNS, inducing a full-blown neuropathy. Both the CNS and PNS displayed inflammation, while the PNS was also characterized by fibrosis, massive infiltration of macrophages, and edema. Tamoxifen-induced deletion of Fbxo7, after myelination using the Plp1-CreERT2 line, led to a small number of degenerated axons and hence a very mild peripheral neuropathy. Interestingly, loss of Fbxo7 also resulted in reduced proteasome activity in Schwann cells but not in cerebellar granule neurons, indicating a specific sensitivity of the former cell type. Together, our results demonstrate an essential role for FBXO7 in myelinating cells to support associated axons, which is fundamental to the proper developmental establishment and the long-term integrity of the axon-myelin unit.SIGNIFICANCE STATEMENT The myelination of axons facilitates the fast propagation of electrical signals and the trophic support of the myelin-axon unit. Here, we report that deletion of Fbxo7 in myelinating cells in mice triggered motor impairment but had no effect on myelin biogenesis. Loss of Fbxo7 in myelinating glia, however, led to axonal degeneration in the CNS and peripheral neuropathy of the axonal type. In addition, we found that Schwann cells were particularly sensitive to Fbxo7 deficiency reflected by reduced proteasome activity. Based on these findings, we conclude that Fbxo7 is essential for the support of the axon-myelin unit and long-term axonal health.


Axons/metabolism , F-Box Proteins/genetics , Myelin Sheath/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Apoptosis , Axons/pathology , Cells, Cultured , Central Nervous System/metabolism , Central Nervous System/pathology , F-Box Proteins/metabolism , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/pathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Proteasome Endopeptidase Complex/metabolism
6.
Hum Mol Genet ; 28(12): 2001-2013, 2019 06 15.
Article En | MEDLINE | ID: mdl-30753527

Parkinson's disease (PD) is the second most common neurodegenerative disorder and a central role for α-synuclein (αSyn; SNCA) in disease aetiology has been proposed based on genetics and neuropathology. To better understand the pathological mechanisms of αSyn, we generated induced pluripotent stem cells (iPSCs) from healthy individuals and PD patients carrying the A53T SNCA mutation or a triplication of the SNCA locus and differentiated them into dopaminergic neurons (DAns). iPSC-derived DAn from PD patients carrying either mutation showed increased intracellular αSyn accumulation, and DAns from patients carrying the SNCA triplication displayed oligomeric αSyn pathology and elevated αSyn extracellular release. Transcriptomic analysis of purified DAns revealed perturbations in expression of genes linked to mitochondrial function, consistent with observed reduction in mitochondrial respiration, impairment in mitochondrial membrane potential, aberrant mitochondrial morphology and decreased levels of phosphorylated DRP1Ser616. Parkinson's iPSC-derived DAns showed increased endoplasmic reticulum stress and impairments in cholesterol and lipid homeostasis. Together, these data show a correlation between αSyn cellular pathology and deficits in metabolic and cellular bioenergetics in the pathology of PD.


Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Parkinson Disease/genetics , alpha-Synuclein/genetics , Cell Differentiation , Dynamins/metabolism , Endoplasmic Reticulum Stress/genetics , Energy Metabolism/genetics , Humans , Lipid Metabolism/genetics , Membrane Potential, Mitochondrial , Mitochondria/ultrastructure , Mutation , Parkinson Disease/metabolism , RNA-Seq , Synucleinopathies/metabolism , alpha-Synuclein/metabolism
7.
Behav Brain Res ; 352: 133-141, 2018 10 15.
Article En | MEDLINE | ID: mdl-29074404

In recent years our understanding of Parkinson's disease has expanded both in terms of pathological hallmarks as well as relevant genetic influences. In parallel with the aetiological discoveries a multitude of PD animal models have been established. The vast majority of these are rodent models based on environmental, genetic and mechanistic insight. A major challenge in many of these models is their ability to only recapitulate some of the complex disease features seen in humans. Although symptom alleviation and clinical signs are of utmost importance in therapeutic research many of these models lack comprehensive behavioural testing. While non-motor symptoms become increasingly important as early diagnostic markers in PD, they are poorly characterized in rodents. In this review we look at well-established and more recent animal models of PD in terms of behavioural characterization and discuss how they can best contribute to progression in Parkinson's research.


Parkinsonian Disorders/psychology , Rodentia , Animals , Behavior , Humans , Rodentia/psychology
8.
EMBO J ; 35(18): 2008-25, 2016 09 15.
Article En | MEDLINE | ID: mdl-27497298

Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix-loop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.


F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Knockout Techniques , Parkinsonian Disorders/pathology , Proteasome Endopeptidase Complex/metabolism , Animals , Mice, Knockout , Protein Processing, Post-Translational , Ubiquitination
9.
J Neurosci ; 32(16): 5398-413, 2012 Apr 18.
Article En | MEDLINE | ID: mdl-22514304

BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.


Axons/metabolism , Dendrites/metabolism , Neurons/cytology , Synaptic Vesicles/classification , Synaptic Vesicles/metabolism , Synaptotagmins/metabolism , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Coculture Techniques , Colforsin/pharmacology , Disks Large Homolog 4 Protein , Embryo, Mammalian , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Female , Glycine/pharmacology , Hippocampus/cytology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Patch-Clamp Techniques , Rats , Receptors, AMPA/metabolism , Sodium Channel Blockers/pharmacology , Synapses/physiology , Synaptophysin/metabolism , Synaptotagmins/deficiency , Tetrodotoxin/pharmacology , Time Factors , Transfection , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
...