Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(5): 104703, 2023 05.
Article in English | MEDLINE | ID: mdl-37059181

ABSTRACT

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Subject(s)
Gene Expression Regulation , STAT Transcription Factors , Trans-Activators , Cytokines/metabolism , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Trans-Activators/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Protein Multimerization
2.
Front Cardiovasc Med ; 10: 975012, 2023.
Article in English | MEDLINE | ID: mdl-36923955

ABSTRACT

In this study, we addressed the functional significance of co-operative DNA binding of the cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) in an experimental murine model of acute myocardial infarction (MI). STAT1 knock-in mice expressing a phenylalanine-to-alanine substitution at position 77 in the STAT1 amino-terminal domain were examined for the early clinical effects produced by ligation of the left anterior descending coronary artery (LAD), an established model for MI. The F77A mutation has been previously reported to disrupt amino-terminal interactions between adjacent STAT1 dimers resulting in impaired tetramerization and defective co-operative binding on DNA, while leaving other protein functions unaffected. Our results demonstrate that a loss of STAT1 tetramer stabilization improves survival of adult male mice and ameliorates left ventricular dysfunction in female mice, as determined echocardiographically by an increased ejection fraction and a reduced left intra-ventricular diameter. We found that the ratio of STAT3 to STAT1 protein level was higher in the infarcted tissue in knock-in mice as compared to wild-type (WT) mice, which was accompanied by an enhanced infiltration of immune cells in the infarcted area, as determined by histology. Additionally, RNA sequencing of the infarcted tissue 24 h after LAD ligation revealed an upregulation of inflammatory genes in the knock-in mice, as compared to their WT littermates. Concomitantly, genes involved in oxidative phosphorylation and other metabolic pathways showed a significantly more pronounced downregulation in the infarcted tissue from STAT1F77A/F77A mice than in WT animals. Based on these results, we propose that dysfunctional STAT1 signalling owing to a lack of oligomerisation results in a compensatory increase in STAT3 expression and promotes early infiltration of immune cells in the infarcted area, which has beneficial effects on left ventricular remodelling in early MI following LAD ligation.

3.
Neuropeptides ; 95: 102265, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35696961

ABSTRACT

The neuropeptide substance P (SP) mediates pain transmission, immune modulation, vasodilation and neurogenic inflammation. Its role in the peripheral nervous system has been well characterised. However, its actions on the blood-brain barrier (BBB) are less clear and warrant further study. The aim of this study was to characterise the effect of SP on the brain microvascular endothelial cells using the immortalized human brain microvascular endothelial cell line hCMEC/D3. As part of our studies, we have evaluated changes in expression, at mRNA and protein levels, of genes involved in the function of the blood-brain barrier such as occludin, induced by exposure to SP. We show that the effect of SP is dependent on cell confluence status. Thus, at low confluence but not at full confluence, SP treatment reduced occludin expression. The expression of the SP receptor, neurokinin-1 receptor (NK-1R) (the truncated form of the receptor expressed exclusively in this cell line) was also modulated in a similar pattern. SP treatment stimulated extracellular signal-regulated kinase (Erk2) phosphorylation which was not associated to changes in Interleukin-6 (IL-6), Interleukin-8 (IL-8), or Intercellular Adhesion Molecule 1 (ICAM-1) protein expression. In addition, SP treatment effectively recovered nitric oxide production on cells exposed to tumour necrosis factor alpha (TNF-α). SP did not trigger intracellular calcium release in hCMEC/D3 cells. We conclude that hCMEC/D3 cells are partially responsive to SP, that the effects are mediated through the truncated form of the receptor and are dependent on the confluence status of these cells.


Subject(s)
Endothelial Cells , Receptors, Neurokinin-1 , Blood-Brain Barrier/metabolism , Cell Line , Humans , Occludin/metabolism , Occludin/pharmacology , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Substance P/pharmacology
6.
PLoS Biol ; 14(10): e2000117, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27780205

ABSTRACT

STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein.


Subject(s)
STAT1 Transcription Factor/antagonists & inhibitors , STAT2 Transcription Factor/physiology , Signal Transduction , Animals , Binding Sites , Cell Nucleus/metabolism , DNA/metabolism , Dimerization , Gene Expression/physiology , Humans , Interferon-gamma/metabolism , Interferon-gamma/physiology , Phosphorylation , Protein Binding , Protein Conformation , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism
7.
J Immunol ; 194(12): 5761-74, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25980006

ABSTRACT

CD4(+)CD25(hi) FOXP3(+) regulatory T cells (Tregs) maintain tolerance to self-Ags. Their defective function is involved in the pathogenesis of multiple sclerosis (MS), an inflammatory demyelinating disease of the CNS. However, the mechanisms of such defective function are poorly understood. Recently, we reported that stimulation of TLR2, which is preferentially expressed by human Tregs, reduces their suppressive function and skews them into a Th17-like phenotype. In this study, we tested the hypothesis that TLR2 activation is involved in reduced Treg function in MS. We found that Tregs from MS patients expressed higher levels of TLR2 compared with healthy controls, and stimulation with the synthetic lipopeptide Pam3Cys, an agonist of TLR1/2, reduced Treg function and induced Th17 skewing in MS patient samples more than in healthy controls. These data provide a novel mechanism underlying diminished Treg function in MS. Infections that activate TLR2 in vivo (specifically through TLR1/2 heterodimers) could shift the Treg/Th17 balance toward a proinflammatory state in MS, thereby promoting disease activity and progression.


Subject(s)
Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Adult , Case-Control Studies , Cell Differentiation/drug effects , Cytokines/biosynthesis , Female , Humans , Immunomodulation , Immunophenotyping , Lipoproteins/pharmacology , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/cytology , Th17 Cells/cytology , Toll-Like Receptor 2/agonists , Young Adult
8.
Nat Immunol ; 15(2): 168-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413774

ABSTRACT

STAT1 is an indispensable component of a heterotrimer (ISGF3) and a STAT1 homodimer (GAF) that function as transcription regulators in type 1 and type 2 interferon signaling, respectively. To investigate the importance of STAT1-cooperative DNA binding, we generated gene-targeted mice expressing cooperativity-deficient STAT1 with alanine substituted for Phe77. Neither ISGF3 nor GAF bound DNA cooperatively in the STAT1F77A mouse strain, but type 1 and type 2 interferon responses were affected differently. Type 2 interferon-mediated transcription and antibacterial immunity essentially disappeared owing to defective promoter recruitment of GAF. In contrast, STAT1 recruitment to ISGF3 binding sites and type 1 interferon-dependent responses, including antiviral protection, remained intact. We conclude that STAT1 cooperativity is essential for its biological activity and underlies the cellular responses to type 2, but not type 1 interferon.


Subject(s)
Interferon Type I/metabolism , Interferon-gamma/metabolism , Mutant Proteins/metabolism , STAT1 Transcription Factor/metabolism , Animals , Cells, Cultured , DNA/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Listeriosis/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/genetics , Protein Binding/genetics , Protein Engineering , STAT1 Transcription Factor/genetics , Signal Transduction/genetics , Transgenes/genetics , Vesicular stomatitis Indiana virus
9.
Mol Cell ; 50(1): 149-56, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23582260

ABSTRACT

Signal transducer and activator of transcription 1 (STAT1) is activated by tyrosine phosphorylation upon interferon-γ (IFNγ) stimulation, which results in the expression of genes with antiproliferative and immunomodulatory functions. The inactivation of STAT1 occurs through tyrosine dephosphorylation by the tyrosine phosphatase TC45. It was proposed that recruitment of TC45 required the direct interaction of STAT1 with the scaffold protein ß-arrestin1, making ß-arrestin1 an essential negative regulator of STAT1 and IFNγ signaling (Mo et al., 2008). We tested the relevance of ß-arrestin1 for STAT1 activity. Our results do not confirm ß-arrestin1 as a STAT1-interacting protein. The STAT1 phosphorylation/dephosphorylation cycle was found to be unaffected by both the overexpression and the genetic deletion of ß-arrestin1. Accordingly, ß-arrestin1 did not inhibit STAT1 transcriptional activity or the induction of IFNγ target genes in response to IFNγ. Our data indicate that ß-arrestin1 is dispensable for STAT1 dephosphorylation and the termination of IFNγ signaling.


Subject(s)
Arrestins/metabolism , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , Animals , Arrestins/deficiency , Arrestins/genetics , Genes, Reporter , HEK293 Cells , HeLa Cells , Humans , Mice , Phosphorylation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Time Factors , Transfection , Tyrosine , beta-Arrestins
10.
Methods Mol Biol ; 967: 203-24, 2013.
Article in English | MEDLINE | ID: mdl-23296732

ABSTRACT

Multiple experimental tools have demonstrated that cytokine-induced STAT activation entails the transition of dimer conformations rather than de novo dimerization. In this chapter, we describe the utilization of analytical ultracentrifugation (AUC) as a powerful technique for the quantitative analysis of hydro- and thermodynamic properties of STAT proteins in solution. These studies provided a quantitative understanding of dimer stability and conformational transitions associated with the activation of STAT1.


Subject(s)
Protein Multimerization , STAT Transcription Factors/chemistry , Ultracentrifugation/methods , Hydrodynamics , Protein Structure, Quaternary , Solutions , Thermodynamics
11.
Nucleic Acids Res ; 41(2): 754-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180800

ABSTRACT

The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design.


Subject(s)
DNA/metabolism , STAT1 Transcription Factor/metabolism , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , DNA/chemistry , Phosphorylation , Protein Multimerization , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/chemistry
13.
Blood ; 118(4): 1002-7, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21636857

ABSTRACT

The biologic effects of IFNγ are mediated by the transcription factor STAT1. The activity of STAT1 is inhibited by small ubiquitin-like modifier (SUMO) conjugation. This occurs both directly through decreasing STAT1 tyrosine phosphorylation and indirectly by facilitating STAT1 dephosphorylation consequential to increased STAT1 solubility because of suppressed paracrystal assembly. However, the physiologic implications of SUMO conjugation have remained unclear. Here, we used fibroblasts and bone marrow-derived macrophages (BMMs) from knockin mice expressing SUMO-free STAT1 to explore the consequences of STAT1 sumoylation for IFNγ signaling. Our experiments demonstrated buffer property of paracrystals for activated STAT1, such that SUMO-mediated paracrystal dispersal profoundly reduced phosphorylation of STAT1, which affected both the activating tyrosine 701 and the transcription-enhancing serine 727. Accordingly, the curtailed STAT1 activity in the nucleus caused by SUMO conjugation resulted in diminished transcription of IFNγ-responsive genes; and increased the IFNγ concentration more than 100-fold required to trigger lipopolysaccharide-induced cytotoxicity in bone marrow-derived macrophages. These experiments identify SUMO conjugation of STAT1 as a mechanism to permanently attenuate the IFNγ sensitivity of cells, which prevents hyperresponsiveness to this cytokine and its potentially self-destructive consequences. This sets the mode of SUMO-mediated inhibition apart from the other negative STAT regulators known to date.


Subject(s)
Gene Expression Regulation/immunology , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Sumoylation/physiology , Animals , Fibroblasts/immunology , Fibroblasts/metabolism , Gene Expression , Gene Knock-In Techniques , Immunoblotting , Interferon-gamma/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
14.
Mol Cell Biol ; 31(14): 3029-37, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21576370

ABSTRACT

The treatment of cells with histone deacetylase inhibitors (HDACi) was reported to reveal the acetylation of STAT1 at lysine 410 and lysine 413 (O. H. Krämer et al., Genes Dev. 20:473-485, 2006). STAT1 acetylation was proposed to regulate apoptosis by facilitating binding to NF-κB and to control immune responses by suppressing STAT1 tyrosine phosphorylation, suggesting that STAT1 acetylation is a central mechanism by which histone deacetylase inhibitors ameliorate inflammatory diseases (O. H. Krämer et al., Genes Dev. 23:223-235, 2009). Here, we show that the inhibition of deacetylases had no bearing on STAT1 acetylation and did not diminish STAT1 tyrosine phosphorylation. The glutamine mutation of the alleged acetylation sites, claimed to mimic acetylated STAT1, similarly did not diminish the tyrosine phosphorylation of STAT1 but precluded its DNA binding and nuclear import. The defective transcription activity of this mutant therefore cannot be attributed to STAT1 acetylation but rather to the inactivation of the STAT1 DNA binding domain and its nuclear import signal. Experiments with respective cDNAs provided by the authors of the studies mentioned above confirmed the results reported here, further questioning the validity of the previous data. We conclude that the effects and potential clinical benefits associated with histone deacetylase inhibition cannot be explained by promoting the acetylation of STAT1 at lysines 410 and 413.


Subject(s)
Histone Deacetylases/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Acetylation , Cell Line , Histone Deacetylase Inhibitors/metabolism , Humans , Interferon-alpha/metabolism , Interferon-gamma/metabolism , Lysine/metabolism , Mutation , Phosphorylation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , STAT1 Transcription Factor/genetics
15.
J Biol Chem ; 286(21): 18731-46, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21460228

ABSTRACT

The biological effects of cytokines are mediated by STAT proteins, a family of dimeric transcription factors. In order to elicit transcriptional activity, the STATs require activation by phosphorylation of a single tyrosine residue. Our experiments revealed that fully tyrosine-phosphorylated STAT dimers polymerize via Tyr(P)-Src homology 2 domain interactions and assemble into paracrystalline arrays in the nucleus of cytokine-stimulated cells. Paracrystals are demonstrated to be dynamic reservoirs that protect STATs from dephosphorylation. Activated STAT3 forms such paracrystals in acute phase liver cells. Activated STAT1, in contrast, does not normally form paracrystals. By reversing the abilities of STAT1 and STAT3 to be sumoylated, we show that this is due to the unique ability of STAT1 among the STATs to conjugate to small ubiquitin-like modifier (SUMO). Sumoylation had one direct effect; it obstructed proximal tyrosine phosphorylation, which led to semiphosphorylated STAT dimers. These competed with their fully phosphorylated counterparts and interfered with their polymerization into paracrystals. Consequently, sumoylation, by preventing paracrystal formation, profoundly curtailed signal duration and reporter gene activation in response to cytokine stimulation of cells. The study thus identifies polymerization of activated STAT transcription factors as a positive regulatory mechanism in cytokine signaling. It provides a unifying explanation for the different subnuclear distributions of STAT transcription factors and reconciles the conflicting results as to the role of SUMO modification in STAT1 functioning. We present a generally applicable system in which protein solubility is maintained by a disproportionately small SUMO-modified fraction, whereby modification by SUMO partially prevents formation of polymerization interfaces, thus generating competitive polymerization inhibitors.


Subject(s)
Cytokines/metabolism , Models, Biological , Protein Multimerization/physiology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , SUMO-1 Protein/metabolism , Animals , HeLa Cells , Humans , Mice , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics , SUMO-1 Protein/genetics , Signal Transduction/physiology , Solubility
16.
Biophys J ; 101(11): 2592-600, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22261046

ABSTRACT

The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/ß complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.


Subject(s)
Cell Nucleus/metabolism , STAT1 Transcription Factor/metabolism , Cell Survival , Cell Tracking , Cytosol/metabolism , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Mutant Proteins/metabolism , Protein Transport , STAT1 Transcription Factor/chemistry
17.
Methods Mol Biol ; 647: 139-59, 2010.
Article in English | MEDLINE | ID: mdl-20694665

ABSTRACT

Continuous nucleocytoplasmic shuttling of signal transducer and activator of transcription (STAT) proteins is a key to understand their function as cytokine-responsive transcription factors. STATs enter the nucleus both by carrier-dependent and carrier-independent transport pathways, and it was previously shown that STAT1 exits the nucleus only after its prior enzymatic dephosphorylation by nuclear phosphatases. The identification of different transport pathways for unphosphorylated and tyrosine-phosphorylated STAT dimers was made possible by a combination of a diverse set of experimental approaches in the field of molecular biology. In the following, we will summarize some of the techniques that have been successfully used to decipher molecular mechanisms engaged in STAT1 dynamics.


Subject(s)
DNA/genetics , DNA/metabolism , STAT1 Transcription Factor/metabolism , Transcription, Genetic , Animals , Base Sequence , Biotinylation , Blotting, Western , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Fluorescence Recovery After Photobleaching , Genes, Reporter/genetics , Humans , Immunohistochemistry , Interferons/metabolism , Janus Kinases/metabolism , Microscopy, Fluorescence , Permeability , Phosphorylation , Plasmids/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , STAT1 Transcription Factor/isolation & purification , Signal Transduction , Substrate Specificity
18.
J Mol Biol ; 402(1): 83-100, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20643137

ABSTRACT

Interferon-gamma stimulation triggers tyrosine phosphorylation of the transcription factor STAT1 at position 701, which is associated with switching from carrier-independent nucleocytoplasmic shuttling to carrier-mediated nuclear import. Unlike most substrates that carry a classical nuclear localization signal (NLS) and bind to importin alpha1, STAT1 possesses a nonclassical NLS recognized by the isoform importin alpha5. In the present study, we have analyzed the mechanisms by which importin alpha5 binds phosphorylated STAT1 (pSTAT1). We found that a homodimer of pSTAT1 is recognized by one equivalent of importin alpha5 with K(d)=191+/-20 nM. Whereas tyrosine phosphorylation at position 701 is essential to assemble a pSTAT1-importin alpha5 complex, the phosphate moiety is not a direct binding determinant for importin alpha5. In contrast to classical NLS substrates, pSTAT1 binding to importin alpha5 is not displaced by the N-terminal importin beta binding domain and requires the importin alpha5 C-terminal acidic tail (505-EEDD-508). A local unfolding of importin alpha5 Armadillo (ARM) repeat 10 accompanies high-affinity binding to pSTAT1. This unfolding is mediated by a single conserved tyrosine at position 476 of importin alpha5, which is inserted between ARM repeat 10 helices H1-H2-H3, thereby preventing intramolecular helical stacking essential to stabilize the folding conformation of ARM 10. Introducing a glycine at this position, as in importin alpha1, disrupts high-affinity binding to pSTAT1, suggesting that pSTAT1 recognition is dependent on the intrinsic flexibility of ARM 10. Using the quantitative stoichiometry and binding data presented in this article, together with mutational information available in the literature, we propose that importin alpha5 binds between two STAT1 monomers, with two major binding determinants in the SH2 and DNA binding domains. In vitro, this model is supported by the observation that a 38-mer DNA oligonucleotide containing two tandem cfosM67 promoters can displace importin alpha5 from pSTAT1, suggesting a possible role for DNA in releasing activated STAT1 in the cell nucleus.


Subject(s)
STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/metabolism , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Binding Sites , Cell Nucleus/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Nuclear Localization Signals , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphorylation , Protein Binding , Protein Conformation , STAT1 Transcription Factor/genetics , Sequence Homology, Amino Acid , Surface Plasmon Resonance , alpha Karyopherins/genetics
19.
Cytometry A ; 73A(12): 1128-40, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18773464

ABSTRACT

The observation that some antibodies can enter the nucleus after their microinjection into the cytoplasm established the principle of protein nucleocytoplasmic shuttling. Here, we introduce the concept of stationary antibodies for studying nuclear transport, particularly of native proteins. Contrary to the aforementioned translocating immunoglobulins, stationary antibodies do not cross the nuclear envelope. They are distinguished by their ability to trigger the nucleocytoplasmic redistribution of their antigen. What determines these apparently contradictory outcomes has not been explored. We studied a stationary STAT1 antibody and a translocating importin-beta antibody. The stationary phenotype resulted from the inhibition of carrier-independent transport. This was not due to crosslinking or precipitation of antigen, because the antigen-antibody complex remained highly mobile. Rather, decoration with stationary antibody precluded actual nuclear pore passage of antigen. In addition, both antibodies inhibited the carrier-dependent translocation via importin-alpha, but by diverse mechanisms. The translocating antibody blocked the association with importin-alpha, whereas the stationary antibody prevented the phosphorylation of its antigen, and thus functioned upstream of the importin-alpha binding step. We identified a stationary antibody to green-fluorescent protein (GFP) and probed the translocation of GFP fusions of STAT1, thyroid hormone receptor and histones, demonstrating general application of this approach. Our results provide an experimental rationale for the use of antibodies as unique tools for dissecting protein nuclear translocation. As the microinjection of stationary antibodies extends to analyses of native proteins, this method can complement and validate results obtained with fluorescent-labeled derivatives.


Subject(s)
Active Transport, Cell Nucleus/physiology , Antibodies/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Green Fluorescent Proteins/metabolism , Antibodies/immunology , Green Fluorescent Proteins/immunology , HeLa Cells , Humans , Interferon-gamma/metabolism , Microinjections , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , alpha Karyopherins/immunology , alpha Karyopherins/metabolism , beta Karyopherins/immunology , beta Karyopherins/metabolism
20.
Proc Natl Acad Sci U S A ; 105(27): 9238-43, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18591661

ABSTRACT

The activation/inactivation cycle of STAT transcription factors entails their transition between different dimer conformations. Unphosphorylated STATs can dimerize in an antiparallel conformation via extended interfaces of the globular N-domains, whereas STAT activation triggers a parallel dimer conformation with mutual phosphortyrosine:SH2 domain interactions, resulting in DNA-binding and nuclear retention. However, despite the crucial role of STAT tyrosine phosphorylation in cytokine signaling, it has not been determined how this modification affects the stability and the conformational flexibility of STAT dimers. Here, we use analytical ultracentrifugation and electrophoretic mobility shift assay (EMSA) to study the association of STAT1 in solution before and after tyrosine phosphorylation. It is revealed that STAT1 formed high-affinity dimers (K(d) of approximately 50 nM) with estimated half-lives of 20-40 min irrespective of the phosphorylation status. Our results demonstrate that parallel and antiparallel conformations of STAT1 were present simultaneously, supported by mutually exclusive interfaces; and the transition between conformations occurred through affinity-driven dissociation/association reactions. Therefore, tyrosine phosphorylation was dispensable for DNA binding, but the phosphorylation enforced preformed SH2 domain-mediated dimers, thus enhancing the DNA-binding activity of STAT1 >200-fold. Moreover, upon STAT1 activation the N-domains adopted an open conformation and engaged in interdimer interactions, as demonstrated by their participation in tetramerization instead of dimerization. Yet, homotypic N-domain interactions are not conserved in the STAT family, because the N-domain dissociation constants of STAT1, STAT3, and STAT4 differed by more than three orders of magnitude. In conclusion, STAT1 constantly oscillated between different dimer conformations, whereby the abundance of the dimerization interfaces was determined by tyrosine phosphorylation.


Subject(s)
Phosphotyrosine/metabolism , STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/metabolism , Conserved Sequence , DNA/metabolism , Dimerization , Humans , Models, Molecular , Phosphorylation , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL