Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172857, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692318

ABSTRACT

Residential natural gas meter set assemblies (MSAs) emit methane (CH4), but reported emissions factors vary. To test existing emissions factors, we quantified CH4 emissions from 37 residential MSAs in Calgary, Alberta, Canada. A notable difference with previous studies is the targeted measurement of regulator vents in this study, which were measured with a static chamber, while fugitives were measured with a modified hi-flow sampler. Emissions were dominated by pressure regulator vents (emissions factor = 1.18 g CH4/h/MSA), but 7 fugitives were found (emissions factor = 0.018 g CH4/h/MSA). Six regulator vents were emitting at notably higher rates (≥ 1.79 g CH4/h/MSA). The total empirical emissions factor was 1.20 g CH4/h/MSA (95 % CI, 1.03 to 1.37 g/h/MSA). This is ∼7 times higher than the emissions factor for residential MSAs used in the U.S. EPA's Greenhouse Gas Inventory, which may not include emissions from regulator vents. Upscaling to annual CH4 emissions in Calgary indicates 3234.6 t CH4/yr (95 % CI, 2776.4 t to 3692.9 t CH4/yr) could be emitted from MSAs. This is equivalent to 4.1 % (95 % CI, 3.5 % to 4.7 %) of total city-level CH4 emissions as estimated with satellite data. Results suggest residential MSA emissions may be under-estimated and further study isolating root causes of regulator vent emissions is required to guide mitigation and improve emissions modeling.

2.
Sci Rep ; 13(1): 16759, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798261

ABSTRACT

Satellite observations have been used to measure methane (CH4) emissions from the oil and gas (O&G) industry, particularly by revealing previously undocumented, very large emission events and basin-level emission estimates. However, most satellite systems use passive remote sensing to retrieve CH4 mixing ratios, which is sensitive to sunlight, earth surface properties, and atmospheric conditions. Accordingly, the reliability of satellites for routine CH4 emissions monitoring varies across the globe. To better understand the potentials and limitations of routine monitoring of CH4 emissions with satellites, we investigated the global observational coverage of the TROPOMI instrument onboard the Sentinel-5P satellite-the only satellite system currently with daily global coverage. A 0.1° × 0.1° gridded global map that indicates the average number of days with valid observations from TROPOMI for 2019-2021 was generated by following the measurement retrieval quality-assurance threshold (≥ 0.5). We found TROPOMI had promising observational coverage over dryland regions (maximum: 58.6%) but limited coverage over tropical regions and high latitudes (minimum: 0%). Cloud cover and solar zenith angle were the primary factors affecting observational coverage at high latitudes, while aerosol optical thickness was the primary factor over dryland regions. To further assess the country-level reliability of satellites for detecting and quantifying CH4 emissions from the onshore O&G sector, we extracted the average annual TROPOMI observational coverage (TOC) over onshore O&G infrastructure for 160 countries. Seven of the top-10 O&G-producing countries had an average annual TOC < 10% (< 36 days per year), which indicates the limited ability to routinely identify large emissions events, track their duration, and quantify emissions rates using inverse modelling. We further assessed the potential performance of the latter by combining TOC and the uncertainties from the global O&G inventory. Results indicate that the accuracy of emissions quantifications of onshore O&G sources using TROPOMI data and inverse modeling will be higher in countries located in dryland and mid-latitude regions and lower in tropical and high-latitude regions. Therefore, current passive-sensing satellites have low potential for frequent monitoring of large methane emissions from O&G sectors in countries located in tropical and high latitudes (e.g., Canada, Russia, Brazil, Norway, and Venezuela). Alternative methods should be considered for routine emissions monitoring in these regions.

3.
J Air Waste Manag Assoc ; 71(11): 1319-1332, 2021 11.
Article in English | MEDLINE | ID: mdl-34128777

ABSTRACT

The occurrence and emissions of methane (CH4) from above-ground urban natural gas infrastructure is poorly understood. Compared to below-ground infrastructure, these facilities are relatively easy to monitor and maintain and present an opportunity for cost-effective CH4 reductions. We present a case study and methodology for detecting, attributing, and quantifying CH4 emissions from fence line measurements at above-ground natural gas facilities in the City of Calgary, Alberta, Canada. We produced bounding-box concentration maps by walking around the outer fence of 33 facilities with a backpack-configured trace gas analyzer and a tablet with integrated GPS. Wind measurements were acquired simultaneously from a fixed location on site with a 3D sonic anemometer. We fused geolocation, CH4 concentration, and wind data to determine the likelihood each facility was emitting. We found one definitive leak by carrying out measurements directly alongside an exposed section of pipe. Based on the presence of methyl mercaptan (CH3SH) odor, peak ΔCH4, and the difference between downwind and upwind ΔCH4, we interpret a high plausibility that 22 facilities were emitting CH4, followed by 2 with a medium plausibility, and 8 with a low plausibility. Once verified to plausibly emit, these data were used to estimate emissions flux at six facilities where near-field obstructions were limited. The estimated emissions flux for six facilities was 66.31 mg CH4 s-1, or 2.1 tonnes CH4 yr-1 if this flux remained constant. Overall, this study indicates most above-ground natural gas facilities surveyed in Calgary were emitting CH4. These facilities represent easy mitigation targets for reducing CH4 emissions and improving environmental performance. To our knowledge, this is the first study to integrate qualitative and quantitative information to predict detection plausibility in a complex measurement setting.Implications: The fence line methodology outlined in this study represents an extension of source assessment modes in the US EPA's Other Test Method 33A for human portable systems. This has implications for standardization of emissions measurement in situations where other platforms (e.g., vehicles) are less effective due to access limitations. We believe the methodology presented could become a recognized standard based on performance from controlled testing and added to the regulatory toolkit for emissions verification and compliance.


Subject(s)
Air Pollutants , Natural Gas , Air Pollutants/analysis , Alberta , Environmental Monitoring , Humans , Methane/analysis , Natural Gas/analysis
SELECTION OF CITATIONS
SEARCH DETAIL