Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Chemother Pharmacol ; 93(3): 177-189, 2024 03.
Article in English | MEDLINE | ID: mdl-38010394

ABSTRACT

PURPOSE: Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2­negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS: We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelial‒mesenchymal transition. RESULTS: Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION: Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Adult , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Leukocytes, Mononuclear , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics
2.
Onco Targets Ther ; 15: 165-180, 2022.
Article in English | MEDLINE | ID: mdl-35237050

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.

3.
Clin Cancer Res ; 28(2): 279-288, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34716194

ABSTRACT

PURPOSE: Soft-tissue sarcomas (STS) are a rare, heterogeneous group of mesenchymal tumors. For decades the mainstay of treatment for advanced, unresectable STS has been palliative chemotherapy. High levels of activated MET receptor have been reported in various sarcoma cell lines, together with elevated vascular endothelial growth factor (VEGF) levels in patients with STS, suggesting that dual targeting of the VEGF and MET pathways with the multi-receptor tyrosine kinase inhibitor cabozantinib would result in clinical benefit in this population. PATIENTS AND METHODS: We performed an open-label, multi-institution, single-arm phase II trial of single-agent cabozantinib in adult patients with advanced STS and progressive disease after at least 1 standard line of systemic therapy. Patients received 60 mg oral cabozantinib once daily in 28-day cycles, and dual primary endpoints of overall response rate and 6-month progression-free survival (PFS) were assessed. Changes in several circulating biomarkers were assessed as secondary endpoints. RESULTS: Six (11.1%; 95% CI, 4.2%-22.6%) of the 54 evaluable patients enrolled experienced objective responses (all partial responses). Six-month PFS was 49.3% (95% CI, 36.2%-67.3%), with a median time on study of 4 cycles (range, 1-99). The most common grade 3/4 adverse events were hypertension (7.4%) and neutropenia (16.7%). Patients' levels of circulating hepatocyte growth factor (HGF), soluble MET, and VEGF-A generally increased after a cycle of therapy, while soluble VEGFR2 levels decreased, regardless of clinical outcome. CONCLUSIONS: Cabozantinib single-agent antitumor activity was observed in patients with selected STS histologic subtypes (alveolar soft-part sarcoma, undifferentiated pleomorphic sarcoma, extraskeletal myxoid chondrosarcoma, and leiomyosarcoma) highlighting the biomolecular diversity of STS.


Subject(s)
Sarcoma , Vascular Endothelial Growth Factor A , Anilides/administration & dosage , Humans , Protein Kinase Inhibitors/therapeutic use , Pyridines , Sarcoma/drug therapy , Sarcoma/pathology
4.
Oncotarget ; 11(44): 3959-3971, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33216844

ABSTRACT

BACKGROUND: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g., O6-methylguanine DNA methyltransferase (MGMT), mismatch repair (MMR), or p53 status. MATERIALS AND METHODS: We conducted a phase 1 trial of TRC102 with temozolomide given orally on days 1-5 of 28-day cycles in adult patients with refractory solid tumors that had progressed on standard therapy. Tumor induction of nuclear biomarkers of DNA damage response (DDR) γH2AX, pNBs1, and Rad51 was assessed in the context of MGMT and MMR protein expression for expansion cohort patients. RESULTS: Fifty-two patients were enrolled (37 escalation, 15 expansion) with 51 evaluable for response. The recommended phase 2 dose was 125 mg TRC102, 150 mg/m2 temozolomide QDx5. Common adverse events (grade 3/4) included anemia (19%), lymphopenia (12%), and neutropenia (10%). Four patients achieved partial responses (1 non-small cell lung cancer, 2 granulosa cell ovarian cancer, and 1 colon cancer) and 13 patients had a best response of stable disease. Retrospective analysis of 15 expansion cohort patients did not demonstrate a correlation between low tumor MGMT expression and patient response, but treatment induced nuclear Rad51 responses in 6 of 12 patients. CONCLUSIONS: The combination of TRC 102 with temozolomide is active, with 4 of 51 patients experiencing a partial response and 13 of 51 experiencing stable disease, and the side effect profile is manageable.

5.
Cancer Res ; 80(2): 304-318, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31732654

ABSTRACT

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates ß-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of ß-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma/drug therapy , Cell Plasticity/drug effects , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/pathology , Animals , Antigens, CD/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Biopsy, Large-Core Needle , Cadherins/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Indazoles , Male , Mice , Neoplastic Stem Cells/drug effects , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vimentin/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism
6.
Cancer Res ; 78(24): 6807-6817, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30355619

ABSTRACT

: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across agents and cell types and uncovered gene-expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses and identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to commonly used anticancer drugs. SIGNIFICANCE: The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive compilation to date of directly measured longitudinal transcriptional responses to anticancer agents across a thoroughly characterized ensemble of cancer cell lines.


Subject(s)
Drug Screening Assays, Antitumor/methods , Gene Expression Profiling , National Cancer Institute (U.S.) , Translational Research, Biomedical/methods , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Early Growth Response Protein 1/metabolism , Erlotinib Hydrochloride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Internet , Oligonucleotide Array Sequence Analysis , Signal Transduction , United States , Vorinostat/pharmacology , Gemcitabine
7.
Nucleic Acids Res ; 46(19): 10286-10301, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30239795

ABSTRACT

Some DNA transposons relocate from one genomic location to another using a mechanism that involves generating double-strand breaks at their transposon ends by forming hairpins on flanking DNA. The same double-strand break mode is employed by the V(D)J recombinase at signal-end/coding-end junctions during the generation of antibody diversity. How flanking hairpins are formed during DNA transposition has remained elusive. Here, we describe several co-crystal structures of the Hermes transposase bound to DNA that mimics the reaction step immediately prior to hairpin formation. Our results reveal a large DNA conformational change between the initial cleavage step and subsequent hairpin formation that changes which strand is acted upon by a single active site. We observed that two factors affect the conformational change: the complement of divalent metal ions bound by the catalytically essential DDE residues, and the identity of the -2 flanking base pair. Our data also provides a mechanistic link between the efficiency of hairpin formation (an A:T basepair is favored at the -2 position) and Hermes' strong target site preference. Furthermore, we have established that the histidine residue within a conserved C/DxxH motif present in many transposase families interacts directly with the scissile phosphate, suggesting a crucial role in catalysis.


Subject(s)
DNA Breaks, Double-Stranded , DNA Cleavage , Eukaryota/enzymology , Transposases/physiology , Animals , Binding Sites , Catalysis , Catalytic Domain , DNA Transposable Elements , Eukaryota/genetics , Eukaryota/metabolism , Eukaryotic Cells/enzymology , Eukaryotic Cells/metabolism , Humans , Multigene Family , Protein Conformation , Transposases/chemistry , Transposases/genetics
8.
Semin Oncol ; 43(4): 453-63, 2016 08.
Article in English | MEDLINE | ID: mdl-27663477

ABSTRACT

Multiplex pharmacodynamic (PD) assays have the potential to increase sensitivity of biomarker-based reporting for new targeted agents, as well as revealing significantly more information about target and pathway activation than single-biomarker PD assays. Stringent methodology is required to ensure reliable and reproducible results. Common to all PD assays is the importance of reagent validation, assay and instrument calibration, and the determination of suitable response calibrators; however, multiplex assays, particularly those performed on paraffin specimens from tissue blocks, bring format-specific challenges adding a layer of complexity to assay development. We discuss existing multiplex approaches and the development of a multiplex immunofluorescence assay measuring DNA damage and DNA repair enzymes in response to anti-cancer therapeutics and describe how our novel method addresses known issues.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Biomarkers, Tumor/analysis , Fluorescent Antibody Technique/methods , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Biopsy, Large-Core Needle , Calibration , Chemistry, Clinical/methods , DNA Repair/drug effects , DNA Repair/physiology , Enzymes/analysis , Enzymes/metabolism , Fluorescent Antibody Technique/standards , Humans , Image Processing, Computer-Assisted , Neoplasms/drug therapy , Protein Array Analysis/methods , Quality Control , Reproducibility of Results
9.
Semin Oncol ; 43(4): 501-13, 2016 08.
Article in English | MEDLINE | ID: mdl-27663482

ABSTRACT

Immunotherapy has become a major modality of cancer treatment, with multiple new classes of immunotherapeutics recently entering the clinic and obtaining market approval from regulatory agencies. While the promise of these therapies is great, so is the number of possible combinations not only with each other but also with small molecule therapeutics. Furthermore, the observation of unusual dose-response relationships suggests a critical dependency of drug effectiveness on the dosage regimen (dose and schedule). Clinical pharmacodynamic (PD) biomarkers will be useful endpoints for confirming drug mechanism of action, evaluating combination therapies for synergy or antagonism, and identifying optimal dosage regimens. In contrast to conventional PD in which drug action occurs entirely within a single target cell (ie, is self-contained within the malignant cell), immunotherapy involves a complex mechanism of action with sequential steps that propagate through multiple cell types, both normal and malignant. Its intercellular pharmacology begins with molecular target engagement either on an immune effector cell or a malignant cell, followed by stimulatory biochemical and biological signals in immune effector cells, and then finally ends with activation of cell death mechanisms in malignant cells lying within a certain distance from the activated effector cells (immune cell-tumor cell proximity). Evaluating such "trans-cellular pharmacology," in which different steps of drug action are distributed across multiple cell types, requires novel microscopy and image analysis tools capable of quantifying PD-biomarker responses, mapping the responses onto the cellular geography of the tumor using phenotypic biomarkers to identify specific cell types, and finally analyzing the spatial relationships between biomarkers in the context of each cell's biological role. We have termed this form of nearest neighbor image analysis of drug action "proximity PD microscopy," to indicate the importance of the location of the PD-biomarker response within the cellular landscape of a tumor specimen. We discuss herein the major modes of immunotherapy, and lay out a blueprint for using PD assessment to optimize dosage regimens of single agents and guide development of combination immunotherapy regimens, using PD1/PD-L1 immune checkpoint inhibition as a case study.


Subject(s)
Biomarkers, Tumor/analysis , Cancer Vaccines/pharmacokinetics , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Biomarkers, Tumor/immunology , Cancer Vaccines/therapeutic use , Combined Modality Therapy , Cytokines/immunology , Humans , Immunity, Humoral , Molecular Targeted Therapy/methods , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Treatment Outcome
10.
Biochemistry ; 52(29): 4891-903, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23789744

ABSTRACT

Interest in noncovalent interactions involving halogens, particularly halogen bonds (X-bonds), has grown dramatically in the past decade, propelled by the use of X-bonding in molecular engineering and drug design. However, it is clear that a complete analysis of the structure-energy relationship must be established in biological systems to fully exploit X-bonds for biomolecular engineering. We present here the first comprehensive experimental study to correlate geometries with their stabilizing potentials for fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) X-bonds in a biological context. For these studies, we determine the single-crystal structures of DNA Holliday junctions containing halogenated uracil bases that compete X-bonds against classic hydrogen bonds (H-bonds), estimate the enthalpic energies of the competing interactions in the crystal system through crystallographic titrations, and compare the enthalpic and entropic energies of bromine and iodine X-bonds in solution by differential scanning calorimetry. The culmination of these studies demonstrates that enthalpic stabilization of X-bonds increases with increasing polarizability from F to Cl to Br to I, which is consistent with the σ-hole theory of X-bonding. Furthermore, an increase in the X-bonding potential is seen to direct the interaction toward a more ideal geometry. However, the entropic contributions to the total free energies must also be considered to determine how each halogen potentially contributes to the overall stability of the interaction. We find that bromine has the optimal balance between enthalpic and entropic energy components, resulting in the lowest free energy for X-bonding in this DNA system. The X-bond formed by iodine is more enthalpically stable, but this comes with an entropic cost, which we attribute to crowding effects. Thus, the overall free energy of an X-bonding interaction balances the stabilizing electrostatic effects of the σ-hole against the competing effects on the local structural dynamics of the system.


Subject(s)
DNA/chemistry , Halogens/chemistry , Thermodynamics , Calorimetry, Differential Scanning , Crystallization , Crystallography , Hydrogen Bonding
11.
Nat Chem ; 1(1): 74-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-21378804

ABSTRACT

Halogen bonds (X-bonds) are shown to be geometrically perpendicular to and energetically independent of hydrogen bonds (H-bonds) that share a common carbonyl oxygen acceptor. This orthogonal relationship is accommodated by the in-plane and out-of-plane electronegative potentials of the oxygen, which are differentially populated by H- and X-bonds. Furthermore, the local conformation of a peptide helps to define the geometry of the H-bond and thus the oxygen surface that is accessible for X-bonding. These electrostatic and steric forces conspire to impose a strong preference for the orthogonal geometry of X- and H-bonds. Thus, the optimum geometry of an X-bond can be predicted from the pattern of H-bonds in a folded protein, enabling X-bonds to be introduced to improve ligand affinities without disrupting these structurally important interactions. This concept of orthogonal molecular interactions can be exploited for the rational design of halogenated ligands as inhibitors and drugs, and in biomolecular engineering.


Subject(s)
Halogens/chemistry , Hydrogen/chemistry , Amides/chemistry , Bromobenzenes/chemistry , Hydrogen Bonding , Ketones/chemistry , Peptides/chemistry , Protein Structure, Secondary , Proteins/chemistry , Static Electricity
12.
Curr Top Med Chem ; 7(14): 1336-48, 2007.
Article in English | MEDLINE | ID: mdl-17692024

ABSTRACT

Halogen bonds are short-range molecular interactions that are analogous to classical hydrogen bonds, except that a polarized halogen replaces the hydrogen as the acid in the Lewis acid/base pair. Such interactions occur regularly in the structures of many ligand-protein complexes, but have only recently been recognized in biological systems as a distinct class with well-defined physical characteristics. In this review, we survey twelve single crystal structures of protein kinase complexes with halogenated ligands in order to characterize the role of halogen bonds in conferring specificity and affinity for halogenated inhibitors in this important class of enzymes. From this survey, we attempt to identify the properties of halogen bonds that can be generally applied to bottom-up strategies for designing inhibitors for this and other enzyme targets.


Subject(s)
Halogens/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Mimicry , Protein Binding , Protein Kinases/metabolism , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 104(15): 6188-93, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17379665

ABSTRACT

The halogen bond, a noncovalent interaction involving polarizable chlorine, bromine, or iodine molecular substituents, is now being exploited to control the assembly of small molecules in the design of supramolecular complexes and new materials. We demonstrate that a halogen bond formed between a brominated uracil and phosphate oxygen can be engineered to direct the conformation of a biological molecule, in this case to define the conformational isomer of a four-stranded DNA junction when placed in direct competition against a classic hydrogen bond. As a result, this bromine interaction is estimated to be approximately 2-5 kcal/mol stronger than the analogous hydrogen bond in this environment, depending on the geometry of the halogen bond. This study helps to establish halogen bonding as a potential tool for the rational design and construction of molecular materials with DNA and other biological macromolecules.


Subject(s)
Bromine/chemistry , DNA/chemistry , Genetic Engineering/methods , Macromolecular Substances/chemistry , Models, Molecular , Biophysical Phenomena , Biophysics , Hydrogen Bonding , Molecular Conformation , Uracil/chemistry
14.
J Mol Recognit ; 19(3): 234-242, 2006.
Article in English | MEDLINE | ID: mdl-16575941

ABSTRACT

The crystal structure of the four-stranded DNA Holliday junction has now been determined in the presence and absence of junction binding proteins, with the extended open-X form of the junction seen in all protein complexes, but the more compact stacked-X structure observed in free DNA. The structures of the stacked-X junction were crystallized because of an unexpected sequence dependence on the stability of this structure. Inverted repeat sequences that contain the general motif NCC or ANC favor formation of stacked-X junctions, with the junction cross-over occurring between the first two positions of the trinucleotides. This review focuses on the sequence dependent structure of the stacked-X junction and how it may play a role in structural recognition by a class of dimeric junction resolving enzymes that themselves show no direct sequence recognition.


Subject(s)
DNA, Cruciform/chemistry , DNA/chemistry , Nucleic Acid Conformation , Base Sequence , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA, Cruciform/genetics , DNA, Cruciform/metabolism , Models, Molecular , Protein Binding , Recombination, Genetic/genetics , Repetitive Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...