Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
JIMD Rep ; 38: 53-59, 2018.
Article in English | MEDLINE | ID: mdl-28510035

ABSTRACT

OBJECTIVE: Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. METHODS: We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. RESULTS: In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2 = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO2 production after 14C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. CONCLUSION: 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

3.
Orphanet J Rare Dis ; 11(1): 84, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27343064

ABSTRACT

BACKGROUND: Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. RESULTS: Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-(3)H]mannose labeled glycoprotein to [2-(3)H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient. The patient also harboured the homozygous ALG6(F304S) variant, which does not cause CDG but has been reported to be more frequent in PMM2-CDG patients with severe/fatal disease than in those with moderate presentations. WES did not reveal other strong candidate causal genes. CONCLUSIONS: We describe a patient presenting with severe multisystem disease associated with DHDDS deficiency. As retinitis pigmentosa is the only clinical sign in previously reported cases, this report broadens the spectrum of phenotypes associated with this condition.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Congenital Disorders of Glycosylation/enzymology , Chromatography, Thin Layer , Congenital Disorders of Glycosylation/blood , Congenital Disorders of Glycosylation/metabolism , Dolichols/analogs & derivatives , Dolichols/metabolism , Exons/genetics , Glycoproteins/blood , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Hep G2 Cells , Humans , Infant, Newborn , Male , Mutation , Oligosaccharides/metabolism , Polysaccharides/metabolism , RNA, Small Interfering/genetics , Skin/metabolism
4.
JIMD Rep ; 12: 115-20, 2014.
Article in English | MEDLINE | ID: mdl-24002817

ABSTRACT

The facilitative glucose transporter-1 (GLUT1) deficiency or de Vivo syndrome is a rare neuropediatric disorder characterized by drug-resistant epilepsy, acquired microcephaly, delayed psychomotor development, intermittent ataxia, and other paroxysmal neurological disorders due to the presence of dominant mutations in the SLC2A1 gene. Alternating hemiplegia of childhood (AHC) is another rare neuropediatric disorder characterized by episodes of hemiplegia developing during the first 1.5 years of life. Before the recent finding of the gene ATP1A3 as the major cause of AHC, a heterozygous missense mutation in the SLC2A1 gene encoding GLUT1 was described in one child with atypical AHC, suggesting some clinical overlap between AHC and GLUT1 deficiency syndrome (GLUT1DS1). Half of patients with symptoms evocative of GLUT1DS1 with hypoglycorrhachia and up to 25 % of patients with AHC remain molecularly undiagnosed. We investigated whether mutations in SLC2A3 encoding GLUT3, another glucose transporter predominant in the neuronal cell, may account the case of a cohort of 75 SLC2A1 negative GLUTDS1-like patients and seven patients with AHC who were negative for ATP1A3 and SLC2A1 mutations. Automated Sanger sequencing and qPCR analyses failed to detect any mutation of SLC2A3 in the patients analyzed, excluding this gene as frequently mutated in patients with GLUT1DS1 like or AHC.

5.
Neuromuscul Disord ; 21(11): 782-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21727005

ABSTRACT

Dystroglycanopathies are a heterogeneous group of muscular dystrophies with autosomal recessive inheritance characterized by abnormal glycosylation of alpha-dystroglycan. The most severe phenotypes are Walker-Warburg Syndrome (WWS) and muscle-eye-brain disease (MEB) presenting with lissencephaly type II (LIS II) and in which muscular dystrophy is associated with mental retardation and eye abnormalities. To date, six distinct genes, POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE and recently in one case DPM3, have been shown to be involved in dystroglycanopathies. Genomic sequencing alone is still frequently used for diagnosis purpose, not allowing detection of intragenic rearrangements at the heterozygous state contrarily to RNA analysis, quantitative PCR and CGH array analysis. These latter methods enabled us to identify four new intragenic rearrangements in the LARGE gene in three fetuses with WWS, born to two unrelated families: deletion of exons 9-10 and duplication of introns 1-4 for the first family and deletion of exons 4 and 7 for the second one; and a deletion of the last six exons of the POMGNT1 gene in two unrelated MEB patients. Genomic dosage studies using emerging tools such as CGH array should be included in routine molecular analysis of dystroglycanopathies, not only for the screening of the LARGE gene in which this kind of mutation seems to be more frequent than point mutations, but also for the other involved genes, especially in severe clinical cases.


Subject(s)
Gene Duplication/genetics , N-Acetylglucosaminyltransferases/genetics , Sequence Deletion/genetics , Walker-Warburg Syndrome/genetics , Child , Consanguinity , DNA Mutational Analysis , Exons/genetics , Fetus , Humans , Male , Microsatellite Repeats/genetics , Phenotype , Sequence Analysis, RNA , Walker-Warburg Syndrome/physiopathology
6.
J Med Genet ; 47(11): 729-35, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20679665

ABSTRACT

BACKGROUND: In type I congenital disorders of glycosylation (CDG I), proteins necessary for the biosynthesis of the lipid-linked oligosaccharide (LLO) required for protein N-glycosylation are defective. A deficiency in guanosine diphosphate-mannose: GlcNAc(2)-PP-dolichol mannosyltransferase-1 (MT-1) causes CDG Ik (OMIM 608540), and only five patients, with severe multisystemic clinical presentations, have been described with this disease. Objective To characterise genetic, biochemical and clinical data in five new CDG Ik cases and compare these findings with those of the five previously described patients. Methods LLO biosynthesis was examined in skin biopsy fibroblasts, mannosyltransferases were assayed in microsomes prepared from these cells, and ALG1-encoding MT-1 was sequenced at the DNA and complementary DNA levels. Clinical data for the five new patients were collated. RESULTS: Cells from five patients with non-typed CDG I revealed accumulations of GlcNAc(2)-PP-dolichol, the second intermediate in the biosynthesis of LLO. Assay of MT-1, -2 and -3, the first three mannosyltransferases required for extension of this intermediate, demonstrated only MT-1 to be deficient. DNA sequencing of ALG1 revealed nine different mutations, seven of which have not been previously reported. Clinical presentations are severe, with dysmorphias, CNS involvement and ocular disturbances being prevalent. CONCLUSIONS: 5 patients with CDG Ik are described, and their identification reveals that in France, this disease and CDG Ib (mannose phosphate isomerase deficiency: OMIM 602579) are the most frequently diagnosed CDG I after CDG Ia (phosphomannomutase 2 deficiency: OMIM 601785) and substantiate previous observations indicating that this disease presents at the severe end of the CDG I clinical spectrum.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Mannosyltransferases/genetics , Mutation , Base Sequence , Cells, Cultured , Child, Preschool , Congenital Disorders of Glycosylation/classification , DNA Mutational Analysis , Exons/genetics , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Lipopolysaccharides/biosynthesis , Male , Mannosyltransferases/deficiency , Mannosyltransferases/metabolism
7.
Neuropediatrics ; 41(6): 267-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21445818

ABSTRACT

Alternating hemiplegia of childhood (AHC) is a rare neuropediatric disorder classically characterized by episodes of hemiplegia developing in the first months of life, various non-epileptic paroxysmal events and global neurological impairment. If the etiology is unresolved, the disorder is highly suspected to be monogenic with DE NOVO autosomal dominant mutations. A missense mutation in the SLC2A1 gene encoding the facilitative glucose transporter-1 (GLUT1) was recently described in a child fulfilling the existing criteria for the diagnosis of AHC, with the exception of age at onset, thus suggesting a clinical overlap between AHC and GLUT1 deficiency syndrome due to SLC2A1 mutations. We have studied a cohort of 23 patients to investigate whether patients with classical AHC harbor SLC2A1 mutations. Automated Sanger sequencing and MLPA analyses failed to detect any SLC2A1 mutations in the 23 patients analyzed, thus excluding mutations of this gene as a frequent cause of classical AHC.


Subject(s)
Glucose Transporter Type 1/genetics , Mutation , Adolescent , Adult , Age of Onset , Alleles , Child , Child, Preschool , Female , Genetic Association Studies , Genotype , Hemiplegia/genetics , Humans , Male , Middle Aged
8.
J Inherit Metab Dis ; 32 Suppl 1: S313-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19757145

ABSTRACT

The congenital disorders of glycosylation (CDG) are a recently described group of inherited multisystem disorders characterized by defects predominantly of N- and O-glycosylation of proteins. Cardiomyopathy in CDG has previously been described in several subtypes; it is usually associated with high morbidity and mortality and the majority of cases present in the first 2 years of life. This is the first case with presentation in late childhood and the article reviews current literature. An 11-year-old female with a background of learning difficulties presented in cardiac failure secondary to severe dilated cardiomyopathy. Prior to the diagnosis of CDG, her condition deteriorated; she required mechanical support (Excor Berlin Heart) and was listed for cardiac transplant. Investigations included screening for glycosylation disorders, and isoelectric focusing of transferrin revealed an abnormal type 1 pattern. Analysis of phosphomannomutase and phosphomannose isomerase showed normal enzyme activity, excluding PMM2 (CDG Ia) and MPI (CDG Ib). Lipid-linked oligosaccharide and mutational studies have not yet defined the defect. Despite aggressive therapy there were persistent difficulties achieving adequate anticoagulation and she developed multiple life-threatening thrombotic complications. She was removed from the transplant list and died from overwhelming sepsis 5 weeks following admission. This case emphasizes the need to screen all children with an undiagnosed cardiomyopathy for CDG, regardless of age, and where possible to exclude CDG before the use of cardiac bridging devices. It highlights the many practical and ethical challenges that may be encountered where clinical knowledge and experience are still evolving.


Subject(s)
Cardiomyopathies/etiology , Congenital Disorders of Glycosylation/complications , Blood Coagulation Disorders/etiology , Cardiomyopathies/diagnosis , Cardiomyopathies/therapy , Child , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/metabolism , Fatal Outcome , Female , Heart-Assist Devices , Humans
10.
Neuromuscul Disord ; 19(3): 182-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19179078

ABSTRACT

Fukuyama congenital muscular dystrophy (FCMD) is frequent in Japan, due to a founder mutation of the fukutin gene (FKTN). Outside Japan, FKTN mutations have only been reported in a few patients with a wide spectrum of phenotypes from Walker-Warburg syndrome to limb-girdle muscular dystrophy (LGMD2M). We studied four new Caucasian patients from three unrelated families. All showed raised serum CK initially isolated in one case and muscular dystrophy. Immunohistochemical studies and haplotype analysis led us to search for mutations in FKTN. Two patients (two sisters) presented with congenital muscular dystrophy, mental retardation, and posterior fossa malformation including cysts, and brain atrophy at Brain MRI. The other two patients had normal intelligence and brain MRI. Sequencing of the FKTN gene identified three previously described mutations and two novel missense mutations. Outside Japan, fukutinopathies are associated with a large spectrum of phenotypes from isolated hyperCKaemia to severe CMD, showing a clear overlap with that of FKRP.


Subject(s)
Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Muscular Dystrophies/genetics , Mutation/genetics , Nervous System Malformations/genetics , Adult , Atrophy/genetics , Atrophy/pathology , Atrophy/physiopathology , Brain/abnormalities , Brain/pathology , Brain/physiopathology , Child , Creatine Kinase/analysis , Creatine Kinase/blood , DNA Mutational Analysis , Fatal Outcome , Female , Genetic Markers/genetics , Genetic Predisposition to Disease/ethnology , Genotype , Humans , Intellectual Disability/pathology , Intellectual Disability/physiopathology , Male , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Nervous System Malformations/pathology , Nervous System Malformations/physiopathology , Phenotype , Syndrome , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL