Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
PLoS Pathog ; 19(7): e1011510, 2023 07.
Article En | MEDLINE | ID: mdl-37471459

Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.


Microsporidia , Nematoda , Animals , Microsporidia/genetics , Phylogeny , Nematoda/genetics , Caenorhabditis elegans/genetics , Genomics
2.
Elife ; 122023 02 15.
Article En | MEDLINE | ID: mdl-36790166

Argonaute (AGO) proteins associate with small RNAs to direct their effector function on complementary transcripts. The nematode Caenorhabditis elegans contains an expanded family of 19 functional AGO proteins, many of which have not been fully characterized. In this work, we systematically analyzed every C. elegans AGO using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG tags. We have characterized the expression patterns of each AGO throughout development, identified small RNA binding complements, and determined the effects of ago loss on small RNA populations and developmental phenotypes. Our analysis indicates stratification of subsets of AGOs into distinct regulatory modules, and integration of our data led us to uncover novel stress-induced fertility and pathogen response phenotypes due to ago loss.


Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , RNA Interference , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , RNA, Small Interfering/metabolism , Gene Regulatory Networks
4.
Sci Adv ; 7(19)2021 05.
Article En | MEDLINE | ID: mdl-33952520

Parental infection can result in the production of offspring with enhanced immunity phenotypes. Critically, the mechanisms underlying inherited immunity are poorly understood. Here, we show that Caenorhabditis elegans infected with the intracellular microsporidian parasite N. parisii produce progeny that are resistant to microsporidia infection. We determine the kinetics of the response and show that intergenerational immunity prevents host-cell invasion by Nematocida parisii and enhances survival to the bacterial pathogen Pseudomonas aeruginosa We demonstrate that immunity is induced by the parental transcriptional response to infection, which can be mimicked through maternal somatic depletion of PALS-22 and the retinoblastoma protein ortholog, LIN-35. We find that other biotic and abiotic stresses (viral infection and cadmium exposure) that induce a similar transcriptional response as microsporidia also induce immunity in progeny. Together, our results reveal how a parental transcriptional signal can be induced by distinct stimuli and protect offspring against multiple classes of pathogens.

6.
Nat Commun ; 11(1): 729, 2020 02 05.
Article En | MEDLINE | ID: mdl-32024854

The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments.


Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/genetics , RNA Splicing , Chromatin Assembly and Disassembly , Computational Biology/methods , Databases, Genetic , Genome, Human , Humans , Metabolic Networks and Pathways/genetics , Neoplasms/metabolism , Promoter Regions, Genetic
7.
Mol Cell ; 77(6): 1307-1321.e10, 2020 03 19.
Article En | MEDLINE | ID: mdl-31954095

A comprehensive catalog of cancer driver mutations is essential for understanding tumorigenesis and developing therapies. Exome-sequencing studies have mapped many protein-coding drivers, yet few non-coding drivers are known because genome-wide discovery is challenging. We developed a driver discovery method, ActiveDriverWGS, and analyzed 120,788 cis-regulatory modules (CRMs) across 1,844 whole tumor genomes from the ICGC-TCGA PCAWG project. We found 30 CRMs with enriched SNVs and indels (FDR < 0.05). These frequently mutated regulatory elements (FMREs) were ubiquitously active in human tissues, showed long-range chromatin interactions and mRNA abundance associations with target genes, and were enriched in motif-rewiring mutations and structural variants. Genomic deletion of one FMRE in human cells caused proliferative deficiencies and transcriptional deregulation of cancer genes CCNB1IP1, CDH1, and CDKN2B, validating observations in FMRE-mutated tumors. Pathway analysis revealed further sub-significant FMREs at cancer genes and processes, indicating an unexplored landscape of infrequent driver mutations in the non-coding genome.


Biomarkers, Tumor/genetics , Chromatin/metabolism , Gene Regulatory Networks , Mutation , Neoplasms/genetics , Neoplasms/pathology , Regulatory Sequences, Nucleic Acid , Cell Proliferation , Chromatin/genetics , Computational Biology/methods , DNA Mutational Analysis , Genome, Human , HEK293 Cells , Humans
8.
Nat Protoc ; 14(2): 482-517, 2019 02.
Article En | MEDLINE | ID: mdl-30664679

Pathway enrichment analysis helps researchers gain mechanistic insight into gene lists generated from genome-scale (omics) experiments. This method identifies biological pathways that are enriched in a gene list more than would be expected by chance. We explain the procedures of pathway enrichment analysis and present a practical step-by-step guide to help interpret gene lists resulting from RNA-seq and genome-sequencing experiments. The protocol comprises three major steps: definition of a gene list from omics data, determination of statistically enriched pathways, and visualization and interpretation of the results. We describe how to use this protocol with published examples of differentially expressed genes and mutated cancer genes; however, the principles can be applied to diverse types of omics data. The protocol describes innovative visualization techniques, provides comprehensive background and troubleshooting guidelines, and uses freely available and frequently updated software, including g:Profiler, Gene Set Enrichment Analysis (GSEA), Cytoscape and EnrichmentMap. The complete protocol can be performed in ~4.5 h and is designed for use by biologists with no prior bioinformatics training.


Computational Biology/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Neoplasm Proteins/genetics , Neoplasms/genetics , Software , Databases, Genetic , Datasets as Topic , Gene Expression Profiling , Humans , Immunity, Innate , Neoplasm Proteins/immunology , Neoplasms/immunology , Neoplasms/pathology , Protein Interaction Mapping/methods
9.
Nat Commun ; 9(1): 4651, 2018 11 02.
Article En | MEDLINE | ID: mdl-30389946

The original version of this Article omitted Suzana A. Kahn, Siddhartha S. Mitra & Samuel H. Cheshier as jointly supervising authors. This has now been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 9(1): 4121, 2018 10 08.
Article En | MEDLINE | ID: mdl-30297829

Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.


Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Medulloblastoma/genetics , Receptor, Notch1/genetics , Animals , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Cell Line, Tumor , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Humans , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Receptor, Notch1/immunology , Receptor, Notch1/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Xenograft Model Antitumor Assays/methods
...