Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Pediatrics ; 154(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38864107

ABSTRACT

A 4-month-old full-term female presented with growth faltering associated with progressive feeding difficulty, rash, abdominal distension, and developmental delays. She was found to have disconjugate gaze, abnormal visual tracking, mixed tone, bruising, and splenomegaly on examination. Initial workup was notable for thrombocytopenia and positive cytomegalovirus (CMV) immunoglobulin G and immunoglobulin M antibodies. She initially presented to the infectious diseases CMV clinic, where she was noted to have severe malnutrition, prompting referral to the emergency department for hospital admission to optimize nutrition with nasogastric tube feeding and facilitate additional evaluation. An active CMV infection with viruria and viremia was confirmed, but elements of her presentation and workup including brain magnetic resonance imaging were not consistent with isolated CMV infection. To avoid premature diagnostic closure, a multidisciplinary workup was initiated and ultimately established her diagnosis.


Subject(s)
Splenomegaly , Thrombocytopenia , Humans , Female , Infant , Splenomegaly/etiology , Splenomegaly/diagnostic imaging , Thrombocytopenia/diagnosis , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/diagnosis , Failure to Thrive/etiology , Diagnosis, Differential
2.
BMC Neurol ; 24(1): 87, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438854

ABSTRACT

BACKGROUND: RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE). CASE PRESENTATION: Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites. CONCLUSIONS: Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.


Subject(s)
Arginine-tRNA Ligase , Microcephaly , Mitochondrial Diseases , Humans , Male , Child , Microcephaly/genetics , Muscle Hypotonia , Phenotype , Mitochondrial Diseases/genetics , Seizures , Arginine-tRNA Ligase/genetics
3.
Elife ; 122023 02 01.
Article in English | MEDLINE | ID: mdl-36723429

ABSTRACT

Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.


Subject(s)
Dystroglycans , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Animals , Mice , Dystroglycans/metabolism , Extracellular Matrix Proteins/metabolism , Glycosylation , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , N-Acetylglucosaminyltransferases/metabolism
4.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187633

ABSTRACT

Matriglycan (-1,3-ß-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.

5.
Elife ; 92020 09 25.
Article in English | MEDLINE | ID: mdl-32975514

ABSTRACT

Matriglycan [-GlcA-ß1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetyl-glucosaminyltransferase 1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNAc-ß1,3-GlcNAc-ß1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~ 90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.


Subject(s)
Dystroglycans/metabolism , Gene Expression , Muscle, Skeletal/physiology , N-Acetylglucosaminyltransferases/genetics , Protein Kinases/genetics , Animals , Male , Mannose/chemistry , Mice , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation , Protein Kinases/metabolism
6.
Elife ; 52016 11 23.
Article in English | MEDLINE | ID: mdl-27879205

ABSTRACT

The 'pseudokinase' SgK196 is a protein O-mannose kinase (POMK) that catalyzes an essential phosphorylation step during biosynthesis of the laminin-binding glycan on α-dystroglycan. However, the catalytic mechanism underlying this activity remains elusive. Here we present the crystal structure of Danio rerio POMK in complex with Mg2+ ions, ADP, aluminum fluoride, and the GalNAc-ß3-GlcNAc-ß4-Man trisaccharide substrate, thereby providing a snapshot of the catalytic transition state of this unusual kinase. The active site of POMK is established by residues located in non-canonical positions and is stabilized by a disulfide bridge. GalNAc-ß3-GlcNAc-ß4-Man is recognized by a surface groove, and the GalNAc-ß3-GlcNAc moiety mediates the majority of interactions with POMK. Expression of various POMK mutants in POMK knockout cells further validated the functional requirements of critical residues. Our results provide important insights into the ability of POMK to function specifically as a glycan kinase, and highlight the structural diversity of the human kinome.


Subject(s)
Adenosine Diphosphate/chemistry , Dystroglycans/chemistry , Fish Proteins/chemistry , Magnesium/chemistry , Mannose/chemistry , Protein Kinases/chemistry , Trisaccharides/chemistry , Adenosine Diphosphate/metabolism , Aluminum Compounds/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Dystroglycans/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fluorides/chemistry , Gene Expression , Humans , Magnesium/metabolism , Mannose/metabolism , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Protein Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sf9 Cells , Substrate Specificity , Trisaccharides/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL