Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21261297

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated at this site in response to intramuscular COVID-19 vaccination, and whether these Ab protect against subsequent "breakthrough" infections. We collected longitudinal serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines over a 6-month period and measured the relative level of anti-Spike and anti-Receptor Binding Domain (RBD) Ab. We detected anti-Spike/RBD IgG and IgA and associated secretory component in the saliva of most participants receiving 1 dose of mRNA vaccine. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited greatly diminished anti-Spike/RBD IgG and IgA levels concomitant with a reduction in neutralizing activity in the saliva, although the level of secretory component associated anti-Spike was less susceptible to decay. Examining two prospective cohorts of subjects that were monitored for infections post-vaccination, we found that participants who were subsequently infected with SARS-CoV-2 had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data emphasize the importance of developing COVID-19 vaccines that elicit a durable IgA response. One-Sentence SummaryOur study delves into whether intra-muscular mRNA vaccination regimes confer a local IgA response in the oral cavity and whether the IgA response is associated with protection against breakthrough infection.

2.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20166553

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection, but how it correlates to the antibody response in serum is not known. Here, we profile by enzyme linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA and IgM antibodies rapidly decayed, IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. In a surrogate neutralization ELISA (snELISA), neutralization activity peaks by 31-45 days PSO and slowly declines, though a clear drop is detected at the last blood draw (105-115 days PSO). Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that systemic and mucosal humoral IgG antibodies are maintained in the majority of COVID-19 patients for at least 3 months PSO. Based on their correlation with each other, IgG responses in saliva may serve as a surrogate measure of systemic immunity. One Sentence SummaryIn this manuscript, we report evidence for sustained SARS-CoV-2-specific IgG and transient IgA and IgM responses both at the site of infection (mucosae) and systemically in COVID-19 patients over 3 months and suggest that saliva could be used as an alternative biofluid for monitoring IgG to SARS-CoV-2 spike and RBD antigens.

...