Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 49(8): 1285-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366138

ABSTRACT

Creating long-lasting memories requires learning-induced changes in gene expression, which are impacted by epigenetic modifications of DNA and associated histone proteins. Post-translational modifications (PTMs) of histones are key regulators of transcription, with different PTMs producing unique effects on gene activity and behavior. Although recent studies implicate histone variants as novel regulators of memory, effects of PTMs on the function of histone variants are rarely considered. We previously showed that the histone variant H2A.Z suppresses memory, but it is unclear if this role is impacted by H2A.Z acetylation, a PTM that is typically associated with positive effects on transcription and memory. To answer this question, we used a mutation approach to manipulate acetylation on H2A.Z without impacting acetylation of other histone types. Specifically, we used adeno-associated virus (AAV) constructs to overexpress mutated H2A.Z.1 isoforms that either mimic acetylation (acetyl-mimic) by replacing lysines 4, 7 and 11 with glutamine (KQ), or H2A.Z.1 with impaired acetylation (acetyl-defective) by replacing the same lysines with alanine (KA). Expressing the H2A.Z.1 acetyl-mimic (H2A.Z.1KQ) improved memory under weak learning conditions, whereas expressing the acetyl-defective H2A.Z.1KA generally impaired memory, indicating that the effect of H2A.Z.1 on memory depends on its acetylation status. RNA sequencing showed that H2A.Z.1KQ and H2A.Z.1KA uniquely impact the expression of different classes of genes in both females and males. Specifically, H2A.Z.1KA preferentially impacts genes involved in synaptic function, suggesting that acetyl-defective H2A.Z.1 impairs memory by altering synaptic regulation. Finally, we describe, for the first time, that H2A.Z is also involved in alternative splicing of neuronal genes, whereby H2A.Z depletion, as well as expression of H2A.Z.1 lysine mutants influence transcription and splicing of different gene targets, suggesting that H2A.Z.1 can impact behavior through effects on both splicing and gene expression. This is the first study to demonstrate that direct manipulation of H2A.Z post-translational modifications regulates memory, whereby acetylation adds another regulatory layer by which histone variants can fine tune higher brain functions through effects on gene expression and splicing.


Subject(s)
Alternative Splicing , Histones , Lysine , Memory , Protein Processing, Post-Translational , Transcription, Genetic , Histones/metabolism , Animals , Acetylation , Lysine/metabolism , Memory/physiology , Transcription, Genetic/physiology , Male , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mice, Inbred C57BL , Female
2.
Neurobiol Learn Mem ; 210: 107903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403011

ABSTRACT

Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.


Subject(s)
Adenosine , RNA , Male , Female , Animals , Mice , RNA, Messenger/metabolism , Methylation , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
3.
PLoS Negl Trop Dis ; 16(7): e0010600, 2022 07.
Article in English | MEDLINE | ID: mdl-35857765

ABSTRACT

During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions. To identify molecular pathways in the brain affected by chronic T. gondii infection, we investigated patterns of gene expression. As expected, infection was associated with an enrichment of genes associated with general immune response pathways, that otherwise limits statistical power to identify more informative pathways. To overcome this limitation and focus on pathways of neurological relevance, we developed a novel context enrichment approach that relies on a customized ontology. Applying this approach, we identified genes that exhibited unexpected patterns of expression arising from the combination of cocaine exposure and infection. These include sets of genes which exhibited dampened response to cocaine in infected mice, suggesting a possible mechanism for some observed behaviors and a neuroprotective effect that may be advantageous to parasite persistence. This model offers a powerful new approach to dissect the molecular pathways by which T. gondii infection contributes to neurocognitive disorders.


Subject(s)
Cocaine , Toxoplasma , Animals , Brain/parasitology , Cocaine/metabolism , Dopamine , Gene Expression , Male , Mice
4.
Commun Biol ; 5(1): 482, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590030

ABSTRACT

Histone variants H2A.Z and H3.3 are epigenetic regulators of memory, but roles of other variants are not well characterized. macroH2A (mH2A) is a structurally unique histone that contains a globular macrodomain connected to the histone region by an unstructured linker. Here we assessed if mH2A regulates memory and if this role varies for the two mH2A-encoding genes, H2afy (mH2A1) and H2afy2 (mH2A2). We show that fear memory is impaired in mH2A1, but not in mH2A2-deficient mice, whereas both groups were impaired in a non-aversive spatial memory task. However, impairment was larger for mH2A1- deficient mice, indicating a preferential role for mH2A1 over mH2A2 in memory. Accordingly, mH2A1 depletion in the mouse hippocampus resulted in more extensive transcriptional de-repression compared to mH2A2 depletion. mH2A1-depleted mice failed to induce a normal transcriptional response to fear conditioning, suggesting that mH2A1 depletion impairs memory by altering transcription. Using chromatin immunoprecipitation (ChIP) sequencing, we found that both mH2A proteins are enriched on transcriptionally repressed genes, but only mH2A1 occupancy was dynamically modified during learning, displaying reduced occupancy on upregulated genes after training. These data identify mH2A as a regulator of memory and suggest that mH2A1 supports memory by repressing spurious transcription and promoting learning-induced transcriptional activation.


Subject(s)
Hippocampus , Histones , Animals , Hippocampus/metabolism , Histones/genetics , Histones/metabolism , Mice
6.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34785571

ABSTRACT

Adeno-associated viruses (AAVs) are a commonly used tool in neuroscience to efficiently label, trace, and/or manipulate neuronal populations. Highly specific targeting can be achieved through recombinase-dependent AAVs in combination with transgenic rodent lines that express Cre-recombinase in specific cell types. Visualization of viral expression is typically achieved through fluorescent reporter proteins (e.g., GFP or mCherry) packaged within the AAV genome. Although nonamplified fluorescence is usually sufficient to observe viral expression, immunohistochemical amplification of the fluorescent reporter is routinely used to improve viral visualization. In the present study, Cre-dependent AAVs were injected into the neocortex of wild-type C57BL/6J mice. While we observed weak but consistent nonamplified off-target double inverted open reading frame (DIO) expression in C57BL/6J mice, antibody amplification of the GFP or mCherry reporter revealed notable Cre-independent viral expression. Off-target expression of DIO constructs in wild-type C57BL/6J mice occurred independent of vendor, AAV serotype, or promoter. We also evaluated whether Cre-independent expression had functional effects via designer receptors exclusively activated by designer drugs (DREADDs). The DREADD agonist C21 (compound 21) had no effect on contextual fear conditioning or c-Fos expression in DIO-hM3Dq-mCherry+ cells of C57BL/6J mice. Together, our results indicate that DIO constructs have off-target expression in wild-type subjects. Our findings are particularly important for the design of experiments featuring sensitive systems and/or quantitative measurements that could be negatively impacted by off-target expression.


Subject(s)
Dependovirus , Integrases , Animals , Dependovirus/genetics , Imidazoles , Integrases/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sulfonamides , Thiophenes
7.
Cell Rep ; 36(7): 109551, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407406

ABSTRACT

Rapid removal of histone H2A.Z from neuronal chromatin is a key step in learning-induced gene expression and memory formation, but mechanisms underlying learning-induced H2A.Z removal are unclear. Anp32e was recently identified as an H2A.Z-specific histone chaperone that removes H2A.Z from nucleosomes in dividing cells, but its role in non-dividing neurons is unclear. Moreover, prior studies investigated Anp32e function under steady-state rather than stimulus-induced conditions. Here, we show that Anp32e regulates H2A.Z binding in neurons under steady-state conditions, with lesser impact on stimulus-induced H2A.Z removal. Functionally, Anp32e depletion leads to H2A.Z-dependent impairment in transcription and dendritic arborization in cultured hippocampal neurons, as well as impaired recall of contextual fear memory and transcriptional regulation. Together, these data indicate that Anp32e regulates behavioral and morphological outcomes by preventing H2A.Z accumulation in chromatin rather than by regulating activity-mediated H2A.Z dynamics.


Subject(s)
Dendrites/metabolism , Histone Chaperones/metabolism , Histones/metabolism , Memory , Molecular Chaperones/metabolism , Neurons/metabolism , Transcription, Genetic , Animals , Chromatin/metabolism , Gene Expression Regulation , Hippocampus/metabolism , Male , Mice, Inbred C57BL , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Int J Mol Sci ; 21(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050279

ABSTRACT

Investigation into the role of methylation of the adenosine base (m6A) of RNA has only recently begun, but it quickly became apparent that m6A is able to control and fine-tune many aspects of mRNA, from splicing to translation. The ability of m6A to regulate translation distally, away from traditional sites near the nucleus, quickly caught the eye of neuroscientists because of implications for selective protein translation at synapses. Work in the brain has demonstrated how m6A is functionally required for many neuronal functions, but two in particular are covered at length here: The role of m6A in 1) neuron development; and 2) memory formation. The purpose of this review is not to cover all data about m6A in the brain. Instead, this review will focus on connecting mechanisms of m6A function in neuron development, with m6A's known function in memory formation. We will introduce the concept of "translational priming" and discuss how current data fit into this model, then speculate how m6A-mediated translational priming during memory consolidation can regulate learning and memory locally at the synapse.


Subject(s)
Adenosine/metabolism , Gene Expression Regulation , Memory , RNA/metabolism , Animals , Brain/metabolism , Epigenesis, Genetic , Humans , Mammals , Methylation , Peptide Chain Initiation, Translational , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Sci Rep ; 10(1): 14331, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868857

ABSTRACT

Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.


Subject(s)
Fear/physiology , Histones/physiology , Memory/physiology , Sex Characteristics , Stress Disorders, Post-Traumatic/physiopathology , Animals , Association Learning/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Female , Hyperalgesia/genetics , Male , Maze Learning , Mice, Knockout , Neuronal Plasticity/genetics
10.
Neuropsychopharmacology ; 45(6): 916-924, 2020 05.
Article in English | MEDLINE | ID: mdl-31837649

ABSTRACT

The internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") . Previously, we and others showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram. In these studies, though, CREB function was artificially increased for several days before training. Precisely when increased CREB function is important for allocation remains an unanswered question. Here, we took advantage of a novel optogenetic tool (opto-DN-CREB) to gain spatial and temporal control of CREB function in freely behaving mice. We found increasing CREB function in a small, random population of LA principal neurons in the minutes, but not 24 h, before training was sufficient to enhance memory, likely because these neurons were preferentially allocated to the underlying engram. However, similarly increasing CREB activity in a small population of random LA neurons immediately after training disrupted subsequent memory retrieval, likely by disrupting the precise spatial and temporal patterns of offline post-training neuronal activity and/or function required for consolidation. These findings reveal the importance of the timing of CREB activity in regulating allocation and subsequent memory retrieval, and further, highlight the potential of optogenetic approaches to control protein function with temporal specificity in behaving animals.


Subject(s)
Basolateral Nuclear Complex , Optogenetics , Animals , Fear , Memory , Mice , Neurons
12.
eNeuro ; 5(5)2018.
Article in English | MEDLINE | ID: mdl-30417078

ABSTRACT

Memory formation is a protracted process that initially involves the hippocampus and becomes increasingly dependent on the cortex over time, but the mechanisms of this transfer are unclear. We recently showed that hippocampal depletion of the histone variant H2A.Z enhances both recent and remote memories, but the use of virally mediated depletion reduced H2A.Z levels throughout testing, making its temporally specific function unclear. Given the lack of drugs that target histone variants, we tested existing drugs for efficacy against H2A.Z based on their targeting of known H2A.Z regulators. The Tip60 (part of H2A.Z deposition complex) inhibitor Nu9056 reduced H2A.Z binding, whereas the histone deacetylase (HDAC) inhibitor Trichostatin-A increased H2A.Z acetylation without influencing total H2A.Z in cultured hippocampal neurons. Tip60 (but not HDAC) inhibition 23 h after learning enhanced remote (tested at 7 d) and not recent (tested at 24 h) contextual fear memory in mice. In contrast, Tip60 inhibition 30 d after learning impaired recall of remote memory after 1 h, but protected the memory from further decline 24 h later. These data provide the first evidence of a delayed postlearning role for histone variants in supporting memory transfer during systems consolidation.


Subject(s)
Fear/drug effects , Histones/metabolism , Lysine Acetyltransferase 5/metabolism , Memory/drug effects , Thiazoles/pharmacology , Trans-Activators/metabolism , Animals , Cognition/drug effects , Cognition/physiology , Fear/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylases/metabolism , Histones/genetics , Male , Memory/physiology , Mice, Inbred C57BL , Nucleosomes/metabolism
13.
Cell Rep ; 22(5): 1124-1131, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29386101

ABSTRACT

Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young versus aged mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Histones/metabolism , Learning/physiology , Animals , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Nucleosomes/metabolism
14.
Neuropsychopharmacology ; 42(7): 1502-1510, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28205605

ABSTRACT

The formation of long-lasting memories requires coordinated changes in gene expression and protein synthesis. Although many studies implicate DNA modifications (DNA methylation, histone modifications) in memory formation, the contributions of RNA modifications remain largely unexplored. Here we investigated the role of mRNA methylation in hippocampal-dependent memory formation in mice. RNA modifications are highly dynamic and readily reversible. Methyltransferases add a methyl group to mRNA while demethylases remove methyl groups. Here we focused on examining the role of the best characterized RNA demethylase, FTO (fat mass and obesity-associated) in memory. We observed that FTO is expressed in the nuclei, dendrites and near dendritic spines of mouse dorsal hippocampal CA1 neurons. Next, we found that contextual fear conditioning transiently (0.5 h) decreased Fto levels in these neurons, with the largest decrease in FTO observed near synapses. The decrease in FTO observed shortly after contextual fear conditioning suggests that FTO normally constrains memory formation. To directly test this, we artificially decreased FTO levels in dorsal hippocampus of otherwise normal (wild-type) mice by microinjecting before training a single herpes simplex virus (HSV) vector expressing either CRISPR/Cas9 or shRNA targeted against Fto. Decreasing FTO using either method specifically enhanced contextual fear memory. Together, these results show the importance of FTO during memory formation and, furthermore, implicate mRNA modification and epi-transcriptomics as novel regulators of memory formation.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , CA1 Region, Hippocampal/metabolism , Conditioning, Psychological/physiology , Fear/physiology , Memory/physiology , RNA, Messenger/metabolism , Animals , Fear/psychology , Male , Methylation , Mice , Mice, 129 Strain , Mice, Inbred C57BL
16.
Sci Rep ; 5: 17792, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26639154

ABSTRACT

The mammalian cochlea is a highly specialized organ within the inner ear. Sensory hair cells (HC) in the cochlea detect and transduce sound waves into electrical impulses that are sent to the brain. Studies of the molecular pathways regulating HC formation are hindered by the very sparse nature of HCs, where only ~3300 are found within an entire mouse cochlea. Current cell lines mimic certain aspects of HCs but lack terminal HC marker expression. Here we successfully "pseudo-immortalized" cochlear progenitor cells using the "conditional reprogramming" technique. These cells, termed "Conditionally Reprogrammed Otic Stem Cells" (CR-OSC), are able to bypass the senescence inherent to cochlear progenitor cells without genetic alterations, allowing for the generation of over 15 million cells from a single cochlea. These cells can be differentiated and up-regulate both early and terminal differentiation genes associated with HCs, including the terminal HC differentiation marker prestin. CR-OSCs also respond to known HC cues, including upregulation of HC genes in response to Atoh1 overexpression, and upregulation of prestin expression after thyroid hormone application. Overall, we describe the creation of a HC line capable of regulated expression of HC genes that can easily be recreated in any laboratory from any mouse of interest.


Subject(s)
Cochlea/cytology , Gene Expression Regulation, Developmental , Hair Cells, Auditory/cytology , Stem Cells/cytology , Transcription, Genetic , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Line, Transformed , Cell Lineage/drug effects , Cell Lineage/genetics , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Gene Expression Regulation, Developmental/drug effects , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Homeodomain Proteins/metabolism , Humans , Membrane Proteins/metabolism , Mice , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , NIH 3T3 Cells , Stem Cells/drug effects , Stem Cells/metabolism , Thyroid Hormones/pharmacology , Transcription Factor Brn-3C/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
17.
Chem Biol ; 22(11): 1531-1539, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590638

ABSTRACT

Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , Optogenetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , CREB-Binding Protein/metabolism , Coumaric Acids/chemistry , DNA/chemistry , DNA/metabolism , Electrophoretic Mobility Shift Assay , HEK293 Cells , Humans , Light , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/metabolism , Propionates , Protein Binding , Proto-Oncogene Proteins c-fos/metabolism
18.
Bioessays ; 37(6): 596-601, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25880368

ABSTRACT

Histone variant exchange is a novel epigenetic regulator of cognition. We speculate that H2A.Z, a variant of canonical histone H2A, exerts unique effects on transcription during distinct stages of memory formation, ultimately acting to maintain memory of previous transcriptional states and poise genes for re-activation. Hippocampus-dependent memory formation is initiated by transient expression of memory-related genes, which support the storage of recently acquired memories. Soon after, memories undergo systems consolidation, which transfers memories from the hippocampus to the cortex for long-term storage, and requires ongoing re-activation of memory-related genes. We speculate that learning-induced H2A.Z eviction from nucleosomes initially contributes to stimulus-induced transcriptional induction needed for the initial process of memory consolidation. During systems consolidation, we speculate that delayed incorporation of H2A.Z into nucleosomes of memory-related genes in the cortex is needed to poise genes for rapid re-activation, thus supporting the long-term process of memory stabilization.


Subject(s)
Epigenesis, Genetic , Histones/physiology , Animals , Humans , Nucleosomes/genetics , Nucleosomes/metabolism
19.
Front Genet ; 6: 362, 2015.
Article in English | MEDLINE | ID: mdl-26793235

ABSTRACT

Gene editing tools are essential for uncovering how genes mediate normal brain-behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories.

20.
PLoS One ; 9(3): e91173, 2014.
Article in English | MEDLINE | ID: mdl-24646893

ABSTRACT

p27Kip1 is a cell cycle inhibitor that prevents cyclin dependent kinase (CDK)/cyclin complexes from phosphorylating their targets. p27Kip1 is a known tumor suppressor, as the germline loss of p27Kip1 results in sporadic pituitary formation in aged rodents, and its presence in human cancers is indicative of a poor prognosis. In addition to its role in cancer, loss of p27Kip1 results in regenerative phenotypes in some tissues and maintenance of stem cell pluripotency, suggesting that p27Kip1 inhibitors could be beneficial for tissue regeneration. Because p27Kip1 is an intrinsically disordered protein, identifying direct inhibitors of the p27Kip1 protein is difficult. Therefore, we pursued a high-throughput screening strategy to identify novel p27Kip1 transcriptional inhibitors. We utilized a luciferase reporter plasmid driven by the p27Kip1 promoter to transiently transfect HeLa cells and used cyclohexamide as a positive control for non-specific inhibition. We screened a "bioactive" library consisting of 8,904 (4,359 unique) compounds, of which 830 are Food and Drug Administration (FDA) approved. From this screen, we successfully identified 111 primary hits with inhibitory effect against the promoter of p27Kip1. These hits were further refined using a battery of secondary screens. Here we report four novel p27Kip1 transcriptional inhibitors, and further demonstrate that our most potent hit compound (IC50 = 200 nM) Alsterpaullone 2-cyanoethyl, inhibits p27Kip1 transcription by preventing FoxO3a from binding to the p27Kip1 promoter. This screen represents one of the first attempts to identify inhibitors of p27Kip1 and may prove useful for future tissue regeneration studies.


Subject(s)
Benzazepines/pharmacology , Cyclin-Dependent Kinase Inhibitor p27/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Indoles/pharmacology , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/antagonists & inhibitors , Benzazepines/chemistry , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Forkhead Box Protein O3 , Forkhead Transcription Factors/antagonists & inhibitors , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Genes, Reporter , HeLa Cells , High-Throughput Screening Assays , Humans , Indoles/chemistry , Luciferases/antagonists & inhibitors , Luciferases/genetics , Luciferases/metabolism , Promoter Regions, Genetic , Small Molecule Libraries/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...