Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Virology ; 600: 110233, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39255726

ABSTRACT

Viruses are dependent on the host factors for their replication and survival. Therefore, identification of host factors that druggable for antiviral development is crucial. The actin cytoskeleton plays an important role in the virus infection. The dynamics change of actin and its function are regulated by multiple actin-associated proteins (AAPs). However, the role and mechanism of various AAPs in the life cycle of virus are still enigmatic. In this study, we analyzed the roles of actin and AAPs in the replication of pseudorabies virus (PRV). Using a library of compounds targeting AAPs, our data found that multiple AAPs, such as Rho-GTPases, Rock, Myosin and Formin were involved in PRV infection. Besides, our result demonstrated that the actin-binding protein Drebrin was also participated in PRV infection. Further studies are necessary to elucidate the molecular mechanism of AAPs in the virus life cycle, in the hope of mining host factors for antiviral developments.

2.
J Virol ; 98(9): e0122724, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39207136

ABSTRACT

Viruses deploy sophisticated strategies to hijack the host's translation machinery to favor viral protein synthesis and counteract innate cellular defenses. However, little is known about the mechanisms by which Senecavirus A (SVA) controls the host's translation. Using a series of sophisticated molecular cell manipulation techniques, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as an essential host factor involved in translation control in SVA-infected cells. It was also determined that the SVA structural protein, VP3, binds to and relocalizes hnRNPA2B1, which interferes with the host's protein synthesis machinery to establish a cellular environment that facilitates viral propagation via a two-pronged strategy: first, hnRNPA2B1 serves as a potent internal ribosome entry site (IRES) trans-acting factor, which is selectively co-opted to promote viral IRES-driven translation by supporting the assembly of translation initiation complexes. Second, a strong repression of host cell translation occurs in the context of the VP3-hnRNPA2B1 interaction, resulting in attenuation of the interferons response. This is the first study to demonstrate the interaction between SVA VP3 and hnRNPA2B1, and to characterize their key roles in manipulating translation. This novel dual mechanism, which regulates selective mRNA translation and immune evasion of virus-infected cells, highlights the VP3-hnRNPA2B1 complex as a potential target for the development of modified antiviral or oncolytic reagents. IMPORTANCE: Viral reproduction is contingent on viral protein synthesis, which relies entirely on the host's translation machinery. As such, viruses often need to control the cellular translational apparatus to favor viral protein production and avoid host innate defenses. Senecavirus A (SVA) is an important virus, both as an emerging pathogen in the pork industry and as a potential oncolytic virus for neuroendocrine cancers. Here, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as a critical regulator of the translational landscape during SVA infection. This study supports a model whereby the VP3 protein of SVA efficiently subverts the host's protein synthesis machinery through its ability to bind to and relocalize hnRNPA2B1, not only selectively promoting viral internal ribosome entry site-driven translation but also resulting in global translation shutdown and immune evasion. Together, these data provide new insights into how the complex interactions between translation machinery, SVA, and innate immunity contribute to the pathogenicity of the SVA.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Immunity, Innate , Internal Ribosome Entry Sites , Picornaviridae , Protein Biosynthesis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Picornaviridae/immunology , Host-Pathogen Interactions/immunology , HEK293 Cells , Virus Replication , Immune Evasion , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Cell Line
3.
Viruses ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39205231

ABSTRACT

The African swine fever virus (ASFV) is an ancient, structurally complex, double-stranded DNA virus that causes African swine fever. Since its discovery in Kenya and Africa in 1921, no effective vaccine or antiviral strategy has been developed. Therefore, the selection of more suitable vaccines or antiviral targets is the top priority to solve the African swine fever virus problem. B125R, one of the virulence genes of ASFV, encodes a non-structural protein (pB125R), which is important in ASFV infection. However, the epitope of pB125R is not well characterized at present. We observed that pB125R is specifically recognized by inactivated ASFV-positive sera, suggesting that it has the potential to act as a protective antigen against ASFV infection. Elucidation of the antigenic epitope within pB125R could facilitate the development of an epitope-based vaccine targeting ASFV. In this study, two strains of monoclonal antibodies (mAbs) against pB125R were produced by using the B cell hybridoma technique, named 9G11 and 15A9. The antigenic epitope recognized by mAb 9G11 was precisely located by using a series of truncated ASFV pB125R. The 52DPLASQRDIYY62 (epitope on ASFV pB125R) was the smallest epitope recognized by mAb 9G11 and this epitope was highly conserved among different strains. The key amino acid sites were identified as D52, Q57, R58, and Y62 by the single-point mutation of 11 amino acids of the epitope by alanine scanning. In addition, the immunological effects of the epitope (pB125R-DY) against 9G11 were evaluated in mice, and the results showed that both full-length pB125R and the epitope pB125R-DY could induce effective humoral and cellular immune responses in mice. The mAbs obtained in this study reacted with the eukaryotic-expressed antigen proteins and the PAM cell samples infected with ASFV, indicating that the mAb can be used as a good tool for the detection of ASFV antigen infection. The B cell epitopes identified in this study provide a fundamental basis for the research and development of epitope-based vaccines against ASFV.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Epitopes, B-Lymphocyte , Animals , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Antibodies, Monoclonal/immunology , Mice , Antibodies, Viral/immunology , Mice, Inbred BALB C , Swine , African Swine Fever/immunology , African Swine Fever/virology , Virulence , Epitope Mapping , Female
4.
Nat Commun ; 15(1): 6050, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025886

ABSTRACT

The redox state of arc mantle has been considered to be more oxidized and diverse than that of the mid-ocean ridge, but the cause of the variation is debated. We examine the redox state of the Cenozoic global arc mantle by compiling measured/calculated fO2 of olivine-hosted melt inclusions from arc magma and modeled fO2 based on V/Sc and Cu/Zr ratios of arc basaltic rocks. The results indicate that the redox state of Cenozoic arc mantle is latitude dependent, with less oxidized arc mantle in the low latitudes, contrasting with a near constant across-latitude trend in the mid-ocean ridges. We propose that such a latitude-dependent pattern in the arc mantle may be controlled by the variation in the redox state of subducted sediment, possibly related to a latitudinal variation in the primary production of phytoplankton, which results in more organic carbon and sulfide deposited on the low-latitude ocean floor. Our findings provide evidence for the impact of the surface environment on Earth's upper mantle.

5.
Front Immunol ; 15: 1403070, 2024.
Article in English | MEDLINE | ID: mdl-39015575

ABSTRACT

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Subject(s)
Herpesvirus 1, Suid , Immunity, Innate , Pseudorabies , Signal Transduction , Viral Envelope Proteins , Animals , Humans , Mice , HEK293 Cells , Herpesvirus 1, Suid/immunology , Herpesvirus 1, Suid/physiology , Host-Pathogen Interactions/immunology , Immune Evasion , Membrane Proteins/metabolism , Membrane Proteins/immunology , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Pseudorabies/immunology , Pseudorabies/virology , Ribonucleoproteins/immunology , Ribonucleoproteins/metabolism , Ubiquitination , Viral Envelope Proteins/metabolism
6.
Exp Eye Res ; 246: 110007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029552

ABSTRACT

We investigate the ocular dimensions and shape by using Lenstar900 (LS900), A-scan ultrasonography, and Magnetic Resonance Imaging (MRI) in highly myopic Macaca fascicularis. The ocular dimensions data of LS900, A-scan ultrasonography and MRI was assessed from 8 eyes (4 adult male cynomolgus macaque) with extremely high myopia (≤-1000DS) and compared by means of coefficients of concordance and 95% limits of agreement. Multiple regression analysis was performed to explore the associations between ocular biometry, volume, refraction and inter-instrument discrepancies. Test-retest reliability of three measurements of ocular parameters at two time points was almost equal (intraclass correlation = 0.831 to 1.000). The parallel-forms reliability of three measurements was strong for vitreous chamber depth (VCD) (coefficient of concordance = 0.919 to 0.981), moderate for axial length (AL) (coefficient of concordance = 0.486 to 0.981), and weak for anterior chamber depth (ACD) (coefficient of concordance = 0.267 to 0.621) and lens thickness (LT) (coefficient of concordance = 0.035 to 0.631). The LS900 and MRI systematically underestimated the ACD and LT comparing to A-scan ultrasonography (P < 0.05). Notably, the average AL on LS900 displayed a significant correlation with those on MRI (r = 0.978, P < 0.001) and A-scan ultrasonography (r = 0.990, P < 0.001). Almost 4/5 eyeballs were prolate. The mean eyeball volume positively correlated with AL (r = 0.782, P = 0.022), the width (r = 0.945, P = 0.000), and the length (r = 0.782, P = 0.022) of eyeball, while negatively correlated with SER (r = -0.901, P = 0.000). In conclusion, there was a high inter-instrument concordance for VCD with LS900, A-scan ultrasonography and MRI, while ACD and LT were underestimated with LS900 compared to A-scan ultrasonography, and the LS900 and A-scan ultrasonography could reliably measure the AL. MRI further revealed an equatorial globe shape in extremely myopic non-human primates.


Subject(s)
Axial Length, Eye , Biometry , Macaca fascicularis , Magnetic Resonance Imaging , Ultrasonography , Animals , Male , Magnetic Resonance Imaging/methods , Ultrasonography/methods , Axial Length, Eye/diagnostic imaging , Axial Length, Eye/pathology , Reproducibility of Results , Imaging, Three-Dimensional , Refraction, Ocular/physiology , Disease Models, Animal , Myopia, Degenerative/diagnostic imaging , Anterior Chamber/diagnostic imaging , Anterior Chamber/pathology , Myopia/diagnostic imaging , Myopia/physiopathology , Eye/diagnostic imaging
7.
J Arthroplasty ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823520

ABSTRACT

BACKGROUND: Modular reconstruction systems based on porous tantalum (PT) prosthetic components have been increasingly used for the treatment of complex acetabular bone defects in revision total hip arthroplasty. We report a novel technique that applies a revision cup as a "super-augment" to form a "double-cup" construct for Paprosky type III defects. METHODS: A retrospective review was conducted on revision total hip arthroplasty cases, comparing those treated with double-cup constructs (DC group, n = 48) to those treated with PT shells and augments (PT group, n = 48). All procedures were performed at the same institute between 2017 and 2022. Clinical outcome evaluation utilized the Harris Hip Score, Oxford Hip Score, and the 36-Item Short Form Survey. Preoperative and postoperative radiographic assessments measured hip center of rotation (COR) position and leg length discrepancy. Additionally, postoperative complications and implant survivorship were monitored during the follow-up period. RESULTS: The clinical outcomes improved substantially in both groups, which showed no significant difference in the Harris Hip Score (P = .786), the Oxford Hip Score (P = .570), and the 36-Item Short Form Survey (P = .691). Compared to the PT group, the reconstruction COR was significantly closer to the anatomic COR (vertical distance: 2.630 versus 7.355 mm, P = .0034; horizontal distance: 1.881 versus -6.413 mm, P < .0001) in Paprosky 3B type defects. Additionally, postoperative leg length discrepancy was less in the DC group (-8.252 versus -1.821 mm, P = .0008). Dislocation was the main complication in the DC group, and only 1 patient received re-revision due to repeated dislocation. The cumulative survival rate of the DC group (100%; 95% confidence interval 100) was better than the PT group (83.4%; 95% confidence interval 70.5 to 98.6) when re-revisions for aseptic loosening were the endpoint (P = .046). CONCLUSIONS: The DC is a reliable revision technique for the reconstruction of Paprosky type III bone defects. Although dislocation remains challenging, the biomechanically superior restoration achieved by this technique lowers the risk of aseptic loosening.

8.
Article in English | MEDLINE | ID: mdl-38923489

ABSTRACT

Various training-based spatial filtering methods have been proposed to decode steady-state visual evoked potentials (SSVEPs) efficiently. However, these methods require extensive calibration data to obtain valid spatial filters and temporal templates. The time-consuming data collection and calibration process would reduce the practicality of SSVEP-based brain-computer interfaces (BCIs). Therefore, we propose a temporally local weighting-based phase-locked time-shift (TLW-PLTS) data augmentation method to augment training data for calculating valid spatial filters and temporal templates. In this method, the sliding window strategy using the SSVEP response period as a time-shift step is to generate the augmented data, and the time filter which maximises the temporally local covariance between the original template signal and the sine-cosine reference signal is used to suppress the temporal noise in the augmented data. For the performance evaluation, the TLW-PLTS method was incorporated with state-of-the-art training-based spatial filtering methods to calculate classification accuracies and information transfer rates (ITRs) using three SSVEP datasets. Compared with state-of-the-art training-based spatial filtering methods and other data augmentation methods, the proposed TLW-PLTS method demonstrates superior decoding performance with fewer calibration data, which is promising for the development of fast-calibration BCIs.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Electroencephalography/methods , Calibration , Male , Adult , Female , Young Adult , Reproducibility of Results , Photic Stimulation/methods , Healthy Volunteers
9.
Adv Sci (Weinh) ; 11(31): e2400726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881534

ABSTRACT

Epigenetic mechanisms such as DNA methylation and hydroxymethylation play a significant role in depression. This research has shown that Ten-eleven translocation 2 (Tet2) deficiency prompts depression-like behaviors, but Tet2's transcriptional regulation remains unclear. In the study, bioinformatics is used to identify nuclear receptor subfamily 2 group E member 3 (Nr2e3) as a potential Tet2 regulator. Nr2e3 is found to enhance Tet2's transcriptional activity by binding to its promoter region. Nr2e3 knockdown in mouse hippocampus leads to reduced Tet2 expression, depression-like behaviors, decreased hydroxymethylation of synaptic genes, and downregulation of synaptic proteins like postsynaptic density 95 KDa (PSD95) and N-methy-d-aspartate receptor 1 (NMDAR1). Fewer dendritic spines are also observed. Nr2e3 thus appears to play an antidepressant role under stress. In search of potential treatments, small molecule compounds to increase Nr2e3 expression are screened. Azacyclonal (AZA) is found to enhance the Nr2e3/Tet2 pathway and exhibited antidepressant effects in stressed mice, increasing PSD95 and NMDAR1 expression and dendritic spine density. This study illuminates Tet2's upstream regulatory mechanism, providing a new target for identifying early depression biomarkers and developing treatments.


Subject(s)
DNA-Binding Proteins , Depression , Animals , Mice , Depression/genetics , Depression/metabolism , Depression/drug therapy , Depression/therapy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Hippocampus/metabolism , Male , Mice, Inbred C57BL , COUP Transcription Factors/genetics , COUP Transcription Factors/metabolism , Epigenesis, Genetic/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics
10.
Sci Rep ; 14(1): 14678, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918401

ABSTRACT

Earthquake prevention and disaster mitigation are crucial aspects of social welfare that significantly impact national public security. This paper presents a seismic risk assessment and hazard prediction of the Hunhe Fault in the Shengyang-Fushun (Shen-Fu) New District. The target area is at risk of seismic damage due to two major branch ruptures, namely, F9 and F1; these ruptures have the potential to generate maximum earthquakes with a magnitude of 6.0 in the next 50 to 100 years. A three-dimensional underground velocity structure and asperity source model were established for the target faults. Subsequently, a hybrid technique combining deterministic and empirical approaches was employed to simulate the broadband strong ground motion of the target region in anticipation of the occurrence of expected scenario earthquakes. The distributions of peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD) for the area are provided, and the results indicate that densely populated urban areas could experience PGA values close to 280 cm/s2 along the fault traces. This study provides a reliable basis for engineering construction and urban planning in the Shen-Fu New District.

11.
Cytotherapy ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38819367

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplant (alloHSCT) is a mainstay of treatment for hematologic malignancies such as acute leukemias and aggressive lymphomas. Historically, fresh hematopoietic progenitor cell (HPC) products have been preferred to cryopreserved products (cryo-HPC) due to concerns of loss of stem cell viability and number with the cryopreservation procedure. OBJECTIVE: We aimed to analyze the outcomes of patients who received cryo-HPCs during the COVID-19 pandemic and compare this against historical cohorts that received fresh HPC. STUDY DESIGN: A retrospective chart review was conducted on all adult patients who received a peripheral blood alloHSCT in British Columbia, Canada between June 2017 and November 2021. Baseline characteristics, Kaplan-Meier (KM) overall survival (OS), engraftment, and incidences of acute and chronic graft versus host disease were compared between patients who received cryo-HPCs and fresh HPCs. Univariable analysis followed by multivariable analysis was performed using a backward stepwise selection procedure to generate predictors of OS, cumulative incidence of relapse (CIR), nonrelapse mortality (NRM), and primary and secondary graft failure. RESULTS: Three hundred eighty-three patients were included in the analysis, with cryo-HPC representing 40%. Median viability was higher in the fresh-HPC group at 99.2% (IQR 98.3-99.5) versus cryo-HPCs at 97.0% (96.0, 98.6) (P < 0.01). The 12-month actuarial survivals were 77% in the fresh HPC and 75% in the cryo-HPC groups (P = 0.21). There were no differences between cryo-HPCs and fresh HPCs on univariable analysis of OS, CIR, or NRM. There was a shorter median time to platelet engraftment in patients receiving fresh HPC at 17 days (IQR 16, 20) versus cryo-HPC at 21 days (IQR 18, 29), P < 0.001. There was a shorter median time to neutrophil engraftment in the fresh HPC group at 17 days (IQR 14, 20) versus 20 days (17, 23), P < 0.001. Cryo-HPC accounted for 5 out of 6 cases of primary graft failure (P = 0.04), and 3 out of five cases of secondary graft failure (P = 0.39). There were no significant differences in acute GVHD between the fresh HPC and cryo-HPC groups (P = 0.34). The incidence of moderate or severe chronic GVHD was 32% in the fresh-HPC group and 17% in the cryo-HPC group (P < 0.001). In multivariable analysis, cryopreservation did not emerge as an independent predictor of OS, CIR, NRM, primary GF or secondary GF. However, viability <90% on arrival at our center was a significant predictor of OS (HR 5.3, 2.3-12.3, P < 0.01), primary graft failure (OR 36.3, 5.4-210.2, P < 0.01), and secondary graft failure (OR 18.4, 1.7-121.1, P < 0.01). CONCLUSIONS: Patients who received cryo-HPCs had similar OS and relapse rates to those who received fresh-HPCs but typically took 2-3 days longer to achieve engraftment of platelets or neutrophils and were associated increased primary graft failure. However, after accounting for multiple variables, cryopreservation was no longer a significant predictor of survival or engraftment while viability <90% emerged as an important predictor of OS, primary graft failure, and secondary graft failure. If confirmed, this suggests that viability on arrival at the infusion center may be a good quality control indicator used to identify HPC products that may warrant recollection if the risk of graft failure is sufficiently increased.

12.
Mol Neurobiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780719

ABSTRACT

Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.

13.
ACS Omega ; 9(17): 19031-19042, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708202

ABSTRACT

In order to alleviate the world energy resources crisis, the research and development of natural gas hydrates has a very important economic value and strategic significance. The CH4-CO2 replacement method can not only achieve geological storage of carbon dioxide but also more effectively mine natural gas hydrates. Based on molecular dynamics theory and the properties of natural gas hydrates, this paper delves into the replacement of methane hydrate with carbon dioxide under different temperatures, pressures, and concentrations of ethylene glycol (EG). We established a CO2-Hydrate model and three CO2/EG-Hydrate models with different concentrations of EG, and we simulated the radial distribution function (RDF), mean square displacement (MSD), and relative density distribution of each particle in the system in different conditions. The higher the temperature, the more unstable the methane hydrates are, and the methane hydrates are more prone to decomposition. Compared with 280 and 290 K, the temperature of 270 K is more favorable for carbon dioxide molecules to enter the hydrate layer and form carbon dioxide hydrates. The changes in pressure have little impact on the decomposition of methane hydrates, the rupture of water cages of methane hydrates, and the number of carbon dioxide molecules entering the hydrate layer under temperatures of 280 K and pressures of 1, 4, and 7 MPa. But overall, a pressure of 1 MPa is more conducive for carbon dioxide molecules to enter the hydrate layer and form carbon dioxide hydrates. Adding EG to CO2 molecules can inhibit the decomposition of methane hydrates. However, the higher the concentration of EG, the faster the decomposition of methane hydrates. The degree of fracture of the water cages in methane hydrates is greater under pure CO2 conditions. Adding EG to CO2 molecules is more conducive for CO2 molecules to enter the hydrate layer and form carbon dioxide hydrates. This review is of great significance to improve the mining efficiency and CO2 storage efficiency of the replacement of natural gas hydrates with CO2.

14.
Anal Chem ; 96(17): 6523-6527, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38634570

ABSTRACT

Complete sample digestion is a prerequisite for acquiring high-quality analytical results for geological samples. Closed-vessel acid digestion (bomb) has typically been used for the total digestion of refractory geological samples. However, the long digestion time (4-5 days) and insoluble fluoride complexes still pose challenges for digesting refractory geological samples using this approach. In this study, an efficient and simplified digestion technique combining ultrafine powders from planetary ball milling with bomb digestion was developed for trace element analysis of refractory geological samples: peridotite and granitoid. The method shows two significant improvements compared with previous approaches. (1) By performing dry planetary ultrafine milling, the initial 200 mesh peridotite (<74 µm) could be reduced to 800 mesh (<20 µm) in 6 min at a ball-to-powder mass ratio of approximately 15 using 3 mm tungsten carbide milling balls. (2) Complete peridotite and granitoid dissolution were achieved in approximately 2 h, 60 times faster than what is achievable using previous methods (2 h vs 120 h). Moreover, ultrafine powders effectively suppressed insoluble fluoride formation during bomb digestion. A suite of peridotite and granitoid reference materials were measured to evaluate the stability of this method. This efficient, simple, and reliable sample digestion method could benefit geological, food, environmental, and other fields requiring solid sample decomposition via wet acid, fusion, combustion, or dry ashing.

15.
J Pharm Sci ; 113(7): 1885-1897, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369022

ABSTRACT

The purpose of this study was to develop an in vitro release testing (IVRT) strategy to predict the pre-clinical performance of single agent and combination long acting injectable (LAI) suspension products. Two accelerated IVRT methods were developed using USP apparatus 2 to characterize initial, intermediate, and terminal phases of drug release. Initial and intermediate phases were captured using a suspension cup with moderate agitation to ensure a constant, low surface area exposure of the LAI suspension to the release media. The terminal phase was obtained by exposing the LAI suspension to a high initial paddle speed. This resulted in smaller suspension particulates with high cumulative surface area that were dispersed throughout the release media, enabling rapid drug release. The in vitro release profiles obtained with these two methods in 48 h or less were independently time scaled to reflect the in vivo time scale of approximately 1800 h. Level-A in vitro in vivo correlations (IVIVCs) were separately developed for each method and active pharmaceutical ingredient (API) using in vivo absorption profiles obtained by deconvolution of rat plasma concentration-time profiles. The IVIVCs were successfully validated for each API. This work provides a framework for evaluating individual phases of drug release of complex LAIs to ultimately predict their in vivo performance.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Animals , Delayed-Action Preparations/pharmacokinetics , Rats , Rats, Sprague-Dawley , Injections , Male , Suspensions , Chemistry, Pharmaceutical/methods , Drug Combinations
16.
J Virol ; 98(3): e0168623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376196

ABSTRACT

The porcine reproductive and respiratory syndrome virus (PRRSV) can lead to severe reproductive problems in sows, pneumonia in weaned piglets, and increased mortality, significantly negatively impacting the economy. Post-translational changes are essential for the host-dependent replication and long-term infection of PRRSV. Uncertainty surrounds the function of the ubiquitin network in PRRSV infection. Here, we screened 10 deubiquitinating enzyme inhibitors and found that the ubiquitin-specific proteinase 1 (USP1) inhibitor ML323 significantly inhibited PRRSV replication in vitro. Importantly, we found that USP1 interacts with nonstructural protein 1ß (Nsp1ß) and deubiquitinates its K48 to increase protein stability, thereby improving PRRSV replication and viral titer. Among them, lysine at position 45 is essential for Nsp1ß protein stability. In addition, deficiency of USP1 significantly reduced viral replication. Moreover, ML323 loses antagonism to PRRSV rSD16-K45R. This study reveals the mechanism by which PRRSV recruits the host factor USP1 to promote viral replication, providing a new target for PRRSV defense.IMPORTANCEDeubiquitinating enzymes are critical factors in regulating host innate immunity. The porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1ß (Nsp1ß) is essential for producing viral subgenomic mRNA and controlling the host immune system. The host inhibits PRRSV proliferation by ubiquitinating Nsp1ß, and conversely, PRRSV recruits the host protein ubiquitin-specific proteinase 1 (USP1) to remove this restriction. Our results demonstrate the binding of USP1 to Nsp1ß, revealing a balance of antagonism between PRRSV and the host. Our research identifies a brand-new PRRSV escape mechanism from the immune response.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Female , Endopeptidases/genetics , Peptide Hydrolases/metabolism , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/metabolism , Swine , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
17.
Sci Total Environ ; 916: 170195, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38246364

ABSTRACT

Maintaining an optimal eco-environment is important for sustainable regional development. However, existing methods are inadequate for examining both spatial and temporal dimensions. Here, we propose a systematic procedure for spatiotemporal examination of the eco-environment using the space-time cube (STC) model and describe a preliminary investigation of the coupling relationships between basin ecological quality and water eutrophication in upstream of the Han River basin between 2000 and 2020. The STC model considers the temporal dimension as the third dimension in calculations. We first categorized the basin into three sub-watershed types: forest, cultivated land, and artificial surface. Subsequently, the ecological quality and driving factors were assessed and identified using the remote sensing ecological index (RSEI) and Geodetector method, respectively. The findings indicated that the forest basin and artificial surface basin had the highest and lowest ecological quality, respectively. The spatiotemporal cold spots of ecological quality during the past 20 years were mostly located in the vicinity of reservoirs, rivers, and artificial surface areas. Human activity, precipitation, and the percentage of cultivated land were other important driving factors in the artificial surface, forest, and cultivated land sub-watersheds, respectively, in addition to the dominant factors of elevation and temperature. The results also indicated that when the ecological quality degraded to a certain extent, water eutrophication was significantly coupled with the ecological quality of the catchments. The findings of this study are useful for ecological restoration and sustainable river basin development.

18.
Int J Biol Macromol ; 255: 128111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979744

ABSTRACT

African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. Rapid and early diagnosis is crucial for the prevention of ASF. ASFV mature virions comprise the inner envelope protein, p22, making it an excellent candidate for the serological diagnosis and surveillance of ASF. In this study, the prokaryotic-expressed p22 recombinant protein was prepared and purified for immunization in mice. Four monoclonal antibodies (mAbs) were identified using hybridoma cell fusion, clone purification, and immunological assays. The epitopes of mAbs 14G1 and 22D8 were further defined by alanine-scanning mutagenesis. Our results showed that amino acids C39, K40, V41, D42, C45, G48, E49, and C51 directly bound to 14G1, while the key amino acid epitope for 22D8 included K161, Y162, G163, D165, H166, I167, and I168. Homologous and structural analysis revealed that these sites were highly conserved across Asian and European ASFV strains, and the amino acids identified were located on the surface of p22. Thus, our study contributes to a better understanding of the antigenicity of the ASFV p22 protein, and the results could facilitate the prevention and control of ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Epitope Mapping , Antibodies, Monoclonal , Antibodies, Viral , Epitopes , Amino Acids
19.
Virol J ; 20(1): 264, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968757

ABSTRACT

The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine , Animals , Herpesvirus 1, Suid/physiology , Actins , Cell Line , Virus Replication
20.
Sci Bull (Beijing) ; 68(23): 3048-3054, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37919155

ABSTRACT

After two continents collide, plate convergence and orogenesis are sustained because subducted continental lithosphere continues pulling the surface plate. It remains controversial how, why, and when continental plate convergence and collision slow down and eventually cease. We use an unprecedented data coverage and present a regional-scale seismic tomographic image of the mantle structure beneath the Tibetan Plateau. In the mantle transition zone, we identify multiple high-velocity anomalies and interpret them as detached pieces of the Indian continental slab. Facilitated by internal heterogeneity of the continental lithosphere, piecewise slab detachments could reduce the slab pull force, resulting in the Miocene slowdown of the India-Eurasia convergence and coeval diachronous potassic volcanism in southern Tibet. We propose that slab detachment is a mechanism that eventually will lead to the end of the Indo-Eurasian continental collision and the Himalayan orogeny.

SELECTION OF CITATIONS
SEARCH DETAIL