Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.970
Filter
1.
J Sep Sci ; 47(13): e2400308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982562

ABSTRACT

Jiawei Huoxiang Zhengqi Pill (JHZP) is a commonly used Chinese patent medicine for the clinical treatment of headache, dizziness, chest tightness as well as abdominal distension, and pain caused by wind-cold flu. In this study, a comprehensive strategy combining ultra-high performance liquid chromatography with diode array detector (UHPLC-DAD) fingerprinting and multi-component quantitative analysis was established and validated for quality evaluation of JHZP. A total of 49 characteristic common peaks were selected in a chromatographic fingerprinting study to assess the similarity of 15 batches of JHZP. Furthermore, 109 compounds were identified or preliminarily identified from JHZP by coupling with an advanced hybrid linear ion trap-Orbitrap mass spectrometer. For quantification, the optimized ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was employed for the simultaneous determination of 13 target compounds within 12 min. The sensitivity, precision, reproducibility, and accuracy of the method were satisfactory. This validated UPLC-MS/MS method was successfully applied to analyzing 15 batches of JHZP. The proposed comprehensive strategy combining UHPLC-DAD fingerprinting and multi-component UPLC-MS/MS analysis proved to be highly efficient, accurate, and reliable for the quality evaluation of JHZP, which can be considered as a reference for the overall quality evaluation of other Chinese herbal formulations.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry
2.
Heliyon ; 10(12): e32744, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975206

ABSTRACT

The increasing prevalence and incidence of colorectal cancer (CRC), particularly in young adults, underscore the imperative to comprehend its fundamental mechanisms, discover novel diagnostic and prognostic markers, and enhance therapeutic strategies. Here, we integrated multi-omics data, including gene expression, somatic mutation data and DNA methylation data, to unravel the intricacies of tumor microenvironment (TME) in CRC and search for novel prognostic markers. By calculating the immune score for each patient from the expression profile, we delineated the differential immune cell fraction, constructed an immune-related multi-omics atlas, and identified molecular characteristics. The entire colorectal dataset (n = 343) was randomly divided into training (n = 249) and testing datasets (n = 94). We screened 144 immune-related genes, 6 mutant genes, and 38 methylation probes associated with overall survival (OS). These makers were then incorporated into a 10-gene prognostic model using Lasso and Cox regression in the training dataset, and the model's performance was evaluated in an independent validation dataset. The model exhibited satisfactory results (average concordance index [C-index] = 0.77), with the average 1-year, 3-year, and 5-year AUCs being 0.79, 0.76, and 0.76 in the training dataset and 0.74, 0.80, and 0.90 in the testing dataset. Furthermore, the prognostic model demonstrated applicability in guiding chemotherapy for CRC patients and exhibited a degree of pan-cancer utility in risk stratification. In conclusion, our integrated analysis of multi-omics data revealed immune-related genetic and epigenetic characteristics of the TME. We propose an integrative prognostic model that can stratify risk and guide chemotherapy for CRC patients. The generalizability of the model in risk stratification across different cancer types was validated in Pan-Cancer cohort.

4.
BMC Public Health ; 24(1): 1829, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982457

ABSTRACT

PURPOSE: To examine residents' first-aid kit preparation and its influencing factors. DESIGN: Cross-sectional survey. METHODS: A questionnaire survey was conducted among 449 permanent residents in Sichuan Province using convenience sampling. We examined participants' demographic characteristics, self-efficacy, health literacy, and personality. FINDINGS: Of the participants, 111 (24.7%) stocked a home first-aid kit. The most frequent supplies were disinfection supplies (91.9%), common medicines (86.5%), and dressing supplies (76.6%). Family per capita monthly income, medical expenses payment method, chronic diseases, general self-efficacy, and health literacy were influencing factors of family first-aid kit preparedness. CONCLUSION: A multilevel and interactive emergency literacy education system should be established to improve residents' abilities to prevent emergencies.


Subject(s)
First Aid , Humans , Cross-Sectional Studies , China , Female , Male , Adult , First Aid/statistics & numerical data , Middle Aged , Surveys and Questionnaires , Young Adult , Health Literacy/statistics & numerical data , Self Efficacy , Equipment and Supplies/supply & distribution , Aged , Adolescent , Family/psychology
5.
Sci Rep ; 14(1): 15121, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956402

ABSTRACT

Interleukin-17A therapeutic inhibitors are among the most effective treatment methods for moderate-to-severe plaque psoriasis (PP). Reflectance confocal microscopy is a non-invasive imaging technique already documented to be beneficial in evaluating the follow-up of PP under treatment with topical actives and phototherapy. This study aimed to assess the epidermal and dermal changes associated with psoriasis and its treatment with RCM during systemic secukinumab treatment in patients with moderate-to-severe PP. A pilot study was conducted to evaluate RCM as a non-invasive tool for monitoring secukinumab treatment in patients with PP. For patients receiving secukinumab treatment, lesional skin was selected for RCM imaging, which were recorded at all scheduled times. The RCM evaluation criteria were established based on the histopathological diagnostic criteria for psoriasis. The clinical severity of psoriasis was assessed utilizing the psoriasis area severity index. A total of 23 patients with PP were included in the study. Each patient received 300 mg of subcutaneous secukinumab as induction therapy at baseline and weeks 1-4, followed by maintenance therapy every four weeks. Microscopic confocal changes were observed during the treatment. The results identified early microscopic evidence of the anti-inflammatory activity of secukinumab, which was not detected during the clinical examination. RCM findings correlating with the PASI were used to observe the patient's response to treatment and were identified as follows: acanthosis and parakeratosis, presence of epidermal and dermal inflammatory cells, presence of non-edge dermal papillae, and vascularization in the papillary dermis. This study is the first to demonstrate the use of RCM as an effective tool for non-invasive monitoring of secukinumab therapeutic response at a cellular level in a clinical or research setting. Early detection of RCM parameters associated with secukinumab activity may facilitate the identification of an early treatment response. RCM appears to be capable of providing practical and helpful information regarding follow-up in patients with PP undergoing secukinumab treatment. RCM may also provide novel perspectives on the subclinical evaluation of PP's response to biological therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Interleukin-17 , Microscopy, Confocal , Psoriasis , Humans , Psoriasis/drug therapy , Psoriasis/diagnostic imaging , Psoriasis/pathology , Interleukin-17/antagonists & inhibitors , Microscopy, Confocal/methods , Female , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Adult , Pilot Projects , Follow-Up Studies , Aged , Skin/pathology , Skin/diagnostic imaging , Treatment Outcome , Severity of Illness Index , Antibodies, Monoclonal/therapeutic use
6.
Transl Stroke Res ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028413

ABSTRACT

Ischemic stroke can lead to systemic inflammation, which can activate peripheral immune cells, causing neuroinflammation and brain injury. Meningeal lymphatics play a crucial role in transporting solutes and immune cells out of the brain and draining them into cervical lymph nodes (CLNs). However, the role of meningeal lymphatics in regulating systemic inflammation during the reperfusion stage after ischemia is not well understood. In this study, we demonstrated that brain infarct size, neuronal loss, and the effector function of inflammatory macrophage subsets were reduced after ischemia-reperfusion and disruption of meningeal lymphatics. Spatial memory function was improved in the late stage of ischemic stroke following meningeal lymphatic disruption. Brain-infiltrating immune cells, including neutrophils, monocytes, and T and natural killer cells, were reduced after cerebral ischemia-reperfusion and meningeal lymphatic disruption. Single-cell RNA sequencing analysis revealed that meningeal lymphatic disruption reprogrammed the transcriptome profile related to chemotaxis and leukocyte migration in CLN lymphatic endothelial cells (LECs), and it also decreased chemotactic CCN1 expression in floor LECs. Replenishment of CCN1 through intraventricular injection increased brain infarct size and neuronal loss, while restoring numbers of macrophages/microglia in the brains of meningeal lymphatic-disrupted mice after ischemic stroke. Blocking CCN1 in cerebrospinal fluid reduced brain infarcts and improves spatial memory function after ischemia-reperfusion injury. In summary, this study indicates that CCN1-mediated detrimental inflammation was alleviated after cerebral ischemia-reperfusion injury and meningeal lymphatic disruption. CCN1 represents a novel therapeutic target for inhibiting systemic inflammation in the brain-CLN axis after ischemia-reperfusion injury.

7.
Chem Soc Rev ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962926

ABSTRACT

Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.

8.
Food Chem ; 459: 140431, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39018618

ABSTRACT

Insight investigation on both edible pulps and inedible parts involving inflorescence axis and shreds of Artocarpus heterophyllus Lam were carried out, a total of 98 VOCs and 201 masses were identified by the combination of HS-SPME-GC-MS and PTR-TOF-MS. Among them, according to the consistency of OAV and results of VIP > 1, p < 0.05, compounds methyl isovalerate (A2), 3-methylbutyl acetate (A5) and octanoic acid, ethyl ester (A21) were recognized as aroma markers to distinguish the pulps, shreds and inflorescence axis. Meanwhile, the inflorescence axis (IC50: 1.82 mg/mL) and shreds (IC50: 16.74 mg/mL) exhibited more excellent antioxidant potency than pulps (IC50: 17.43 mg/mL) in vitro. These findings validated the feasibility of coupling HS-SPME-GC-MS and PTR-TOF-MS for rapid detection of characteristic VOCs of this plant, and offered new prospect of fragrance utilization and waste management of the edible and inedible parts of A. heterophyllus fruit.

9.
Mol Cells ; 47(7): 100079, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871298

ABSTRACT

The nonsense-mediated mRNA decay (NMD) pathway and the p53 pathway, linked to tumorgenesis, are also promising targets for cancer treatment. NMD plays an important role in RNA quality control, while the p53 pathway is involved in cancer suppression. However, their individual and combined effects on cervical cancer are poorly understood. In this study, we evaluated the impacts of NMD inhibitor, Mouse double minute 2 homolog (MDM2) inhibitor, and their combination on cell apoptosis, cell cycle, and p53 target genes in human papillomavirus-18-positive HeLa cells. Our findings revealed that XR-2 failed to activate p53 or induce apoptosis in HeLa cells, whereas SMG1 (serine/threonine-protein kinase 1) inhibitor repressed cell proliferation at high concentrations. Notably, the combination of these 2 agents significantly inhibited cell proliferation, arrested the cell cycle, and triggered cell apoptosis. Mechanistically, MDM2 inhibitor and NMD inhibitor likely exert a synergistically through the truncated E6 protein. These results underscore the potential of employing a combination of MDM2 inhibitor and NMD inhibitor as a promising candidate for the clinical treatment of human papillomavirus-infected tumors.

10.
Heliyon ; 10(11): e31705, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845982

ABSTRACT

Acute myeloid leukemia (AML) is a prevalent hematological malignancy among adults. Recent studies suggest that the length of telomeres could significantly affect both the risk of developing AML and the overall survival (OS). Despite the limited focus on the prognostic value of telomere-related genes (TRGs) in AML, our study aims at addressing this gap by compiling a list of TRGs from TelNet, as well as collecting clinical information and TRGs expression data through the Gene Expression Omnibus (GEO) database. The GSE37642 dataset, sourced from GEO and based on the GPL96 platform, was divided into training and validation sets at a 6:4 ratio. Additionally, the GSE71014 dataset (based on the GPL10558 platform), GSE12417 dataset (based on the GPL96 and GPL570 platforms), and another portion of the GSE37642 dataset (based on the GPL570 platform) were designated as external testing sets. Univariate Cox regression analysis identified 96 TRGs significantly associated with OS. Subsequent Lasso-Cox stepwise regression analysis pinpointed eight TRGs (MCPH1, SLC25A6, STK19, PSAT1, KCTD15, DNMT3B, PSMD5, and TAF2) exhibiting robust predictive potential for patient survival. Both univariate and multivariate survival analyses unveiled TRG risk scores and age as independent prognostic variables. To refine the accuracy of survival prognosis, we developed both a nomogram integrating clinical parameters and a predictive risk score model based on TRGs. In subsequent investigations, associations were emphasized not solely regarding the TRG risk score and immune infiltration patterns but also concerning the response to immune-checkpoint inhibitor (ICI) therapy. In summary, the establishment of a telomere-associated genetic risk model offers a valuable tool for prognosticating AML outcomes, thereby facilitating informed treatment decisions.

11.
Plants (Basel) ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891389

ABSTRACT

Pepper is a high-economic-value agricultural crop that faces diverse disease challenges such as blight and anthracnose. These diseases not only reduce the yield of pepper but, in severe cases, can also cause significant economic losses and threaten food security. The timely and accurate identification of pepper diseases is crucial. Image recognition technology plays a key role in this aspect by automating and efficiently identifying pepper diseases, helping agricultural workers to adopt and implement effective control strategies, alleviating the impact of diseases, and being of great importance for improving agricultural production efficiency and promoting sustainable agricultural development. In response to issues such as edge-blurring and the extraction of minute features in pepper disease image recognition, as well as the difficulty in determining the optimal learning rate during the training process of traditional pepper disease identification networks, a new pepper disease recognition model based on the TPSAO-AMWNet is proposed. First, an Adaptive Residual Pyramid Convolution (ARPC) structure combined with a Squeeze-and-Excitation (SE) module is proposed to solve the problem of edge-blurring by utilizing adaptivity and channel attention; secondly, to address the issue of micro-feature extraction, Minor Triplet Disease Focus Attention (MTDFA) is proposed to enhance the capture of local details of pepper leaf disease features while maintaining attention to global features, reducing interference from irrelevant regions; then, a mixed loss function combining Weighted Focal Loss and L2 regularization (WfrLoss) is introduced to refine the learning strategy during dataset processing, enhancing the model's performance and generalization capabilities while preventing overfitting. Subsequently, to tackle the challenge of determining the optimal learning rate, the tent particle snow ablation optimizer (TPSAO) is developed to accurately identify the most effective learning rate. The TPSAO-AMWNet model, trained on our custom datasets, is evaluated against other existing methods. The model attains an average accuracy of 93.52% and an F1 score of 93.15%, demonstrating robust effectiveness and practicality in classifying pepper diseases. These results also offer valuable insights for disease detection in various other crops.

12.
Chemosphere ; 362: 142565, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871187

ABSTRACT

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.

13.
Curr Mol Med ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38835130

ABSTRACT

INTRODUCTION: The major complication of Obliterative Bronchiolitis (OB) is characterized by epithelial cell loss, fibrosis, and luminal occlusion of the terminal small airways, which limits the long-term survival of the recipient after lung transplantation. However, the underlying mechanisms are still not fully clarified. This research aims to investigate whether iron overload-induced ferroptosis is involved in OB development and provide a new target for OB prevention. MATERIALS AND METHODS: Allograft orthotopic tracheal transplantation in mice was applied in our study. Ferrostatin-1 and deferoxamine were administrated to inhibit ferroptosis and get rid of ferric iron, while iron dextran was used to induce an iron overload condition in the recipient. The histological examination, luminal occlusion rate, collagen deposition, iron level, ferroptosis marker (GPX4, PTGS2), and mitochondrial morphological changes of the graft were evaluated in mice. RESULTS: Our research indicated that ferroptosis and iron overload contribute to OB development, while ferroptosis inhibition and iron chelator could reverse the changes. Iron overload exacerbated OB development after orthotopic tracheal transplantation via promoting ferroptosis. CONCLUSION: Overall, this research demonstrated that iron overload-induced ferroptosis is involved in OB, which may be a potential therapeutic target for OB after lung transplantation.

14.
Medicine (Baltimore) ; 103(23): e38510, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847658

ABSTRACT

BACKGROUND: Simulation-based training is used to improve fiberoptic bronchoscopic skills for novices. We developed a nonanatomical task trainer (named 12-hole clock model) that focused on training manipulation of bronchoscopes. The aim of this study was to evaluate the training effect of this model on bronchoscopic skills and learning interests in simulated normal and difficult airways among anesthesia residents. METHODS: Forty-three anesthesia residents without experience in bronchoscopic intubation were randomly divided into control (n = 22) and intervention groups (n = 21). All participants received standard multimedia learning and a baseline test using a normal airway manikin. Then, the control and intervention groups engaged in 60 minutes of training via a traditional airway manikin or the clock model, respectively. After training, the participants completed bronchoscopic performance assessments in simulated normal and difficult airways, as well as an electronic questionnaire related to the course. RESULTS: During training, the total hands-on time of bronchoscopic practice recorded by trainees' themselves was longer in the intervention group than in the control group (1568 ±â€…478 seconds vs 497 ±â€…172 s, P < .0001). Posttraining, the time required to visualize the carina in simulated normal airways was longer in the intervention group than in the control group (22.0 [18.0, 29.0] vs 14.0 [10.8, 18.3], P < .0001), while it was shorter for simulated difficult airways (24.0 [16.0, 32.0] s vs 27.0 [21.0, 35.5] s, P = .0425). The survey results indicated that confidence in bronchoscopic intubation increased in both groups, without significant differences in satisfaction, acceptance, or perceived difficulty between the groups. However, the interest ratings were higher in the intervention group than in the control group. CONCLUSIONS: The 12-hole clock model is a simple and feasible method for improving bronchoscopic skills and promoting interest among trainees. TRIAL REGISTRATION: NCT05327842 at Clinicaltrials.gov.


Subject(s)
Anesthesiology , Bronchoscopy , Clinical Competence , Internship and Residency , Simulation Training , Humans , Bronchoscopy/education , Bronchoscopy/methods , Internship and Residency/methods , Female , Male , Anesthesiology/education , Simulation Training/methods , Adult , Manikins , Intubation, Intratracheal/methods
15.
Chem Commun (Camb) ; 60(51): 6556-6559, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38845407

ABSTRACT

Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.

16.
J Obstet Gynaecol Can ; : 102585, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878822

ABSTRACT

OBJECTIVES: This study investigates experiences of medical students across Canada related to consent for educational sensitive (i.e., pelvic, rectal) exams under anesthesia (EUAs). METHODS: A bilingual online questionnaire was developed and distributed to medical students across Canada. RESULTS: Of 134 respondents, 63% had performed a pelvic EUA, 35% a rectal EUA, and 11% another sensitive EUA during their training. For those who had performed pelvic EUA, 28% were unsure if consent had taken place, 26% reported no specific consent, 20% reported specific consent, and 25% had mixed experiences of consent. For rectal EUAs, 48% reported no specific consent, 37% were unsure if consent had taken place, 13% reported that there had been specific consent, and 2% reported mixed experiences. Most respondents were uncomfortable (36%) or not sure if they were comfortable (32%) with how the consent process was handled for student pelvic EUAs; 31% were comfortable. In open-ended responses, respondents described experiences related to variability, discomfort, and authority. CONCLUSIONS: Non-consensual educational sensitive EUAs continue to take place in medical training across Canada, although practices of consent are highly variable. The majority of respondents reported being uncomfortable or unsure if they were comfortable with how consent for educational sensitive EUAs was practised during their training, and some respondents struggled to express their discomfort given the power dynamics at play.

17.
Food Res Int ; 190: 113905, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945555

ABSTRACT

Bee bread is a product of honeybees, which collect and ferment pollen, that contains highly nutritious and easily digestible active substances. However, its nutritional composition varies significantly with fermentation strains and seasonal changes. To unveil the patterns of microbial community and nutritional component changes in bee bread across seasons, we employed high-throughput techniques to assess the diversity of bacteria and fungi in bee bread. The results indicated that the compositions of bacteria and fungi in bee bread undergo significant seasonal variation, with noticeable changes in the microbial diversity of bee bread from different bee species. Subsequently, metabolomic analysis revealed high activity of glycerophospholipid metabolism in bee bread. Furthermore, our analysis identifaied noteworthy differences in nutritional components, including pH values, sugar content, and free amino acid levels, in bee bread across different seasons.


Subject(s)
Bacteria , Microbiota , Nutritive Value , Seasons , Bees/microbiology , Animals , Bacteria/classification , Fermentation , Amino Acids/analysis , Fungi/classification , Pollen/chemistry , Bread/analysis , Bread/microbiology , Hydrogen-Ion Concentration , Metabolomics
18.
Angew Chem Int Ed Engl ; : e202409435, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945832

ABSTRACT

Visualizing lithium (Li) ions and understanding Li plating/stripping processes as well as evolution of solid electrolyte interface (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were efficiently decoupled and Li ion behavior at interface between different solid-state electrolytes (SSE) was successfully detected. The innovative combining experiments of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy on Li metal anode revealed interfacial morphological/chemical evolution and decoupled Li plating/stripping process from SEI evolution. Though Li plating speed in Li10GeP2S12 (LGPS) was higher than Li3PS4 (LPS), speed of SSE decomposition was similar and ~85% interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25%). Using in situ Kelvin Probe Force Microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

19.
Food Chem ; 455: 139942, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38917655

ABSTRACT

The characteristic flavor of Coffea arabica from Yunnan is largely attributed to the primary processing treatments through affecting the VOCs accumulation. Therefore, a rapid and comprehensive detection technique is needed to accurately recognize VOCs in green coffee beans with different pretreatment methods. Hence, we conducted volatile profiles and identified nine markers of three different primary processed green coffee beans from the major production areas in Yunnan with the combined of HS-SPME-GC-MS and PTR-TOF-MS. The relationships between the chemical composition and the content of VOCs in green coffee beans were elucidated. Among the markers, palmitic acid (F3), linoleic acid (F6), α-ethylidene phenylacetaldehyde (T4), and phytane (T8) contributed to the antioxidant activity of sun-exposed green coffee beans. In conclusion, the analytical technology presented here provided a general tool for an overall and rapid understanding of a detailed volatile profiles of green coffee beans in Yunnan.


Subject(s)
Coffea , Seeds , Volatile Organic Compounds , Coffea/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , China , Seeds/chemistry , Gas Chromatography-Mass Spectrometry , Food Handling , Biomarkers/analysis , Solid Phase Microextraction/methods , Mass Spectrometry , Coffee/chemistry
20.
Sci Bull (Beijing) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38880681
SELECTION OF CITATIONS
SEARCH DETAIL
...