Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 21: 101055, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38173901

ABSTRACT

The formula of food for special medical purpose has a direct impact on physicochemical stability, especially in hot climes and high temperature transport storage environments. An accelerated test (50 °C for 7 weeks) was used to analyze the mechanism of the physicochemical instability of formula A with lactose and maltodextrin, and formula B with maltodextrin. Deep dents and wrinkles were observed on the surface of the formula B, and more fat globules covered the surface of formula A particles after storage for a long time. Significantly higher amounts of furosine and Nε-carboxymethl-l-lysine (CML) were formed and the loss of available lysine was greater in formula A than in formula B. No significant difference was observed in lipid oxidation indicators between the two formulas. The results of this research demonstrated lactose was more active than maltodextrin and led to physicochemical instability.

2.
Int J Biol Sci ; 19(12): 3781-3803, 2023.
Article in English | MEDLINE | ID: mdl-37564198

ABSTRACT

Circular RNAs (circRNAs) are covalently closed RNA structures that play multiple roles in tumorigenesis and progression. Compared with exon‒intron circRNAs, the biological functions and implications of intergenic circRNAs in human cancer are still poorly understood. Here, we performed circRNA microarray analysis and identified an intergenic circRNA, circ_0007379, that was significantly downregulated in patients with colorectal cancer (CRC). The biogenesis of circ_0007379 was mediated by reverse complementary matches (RCMs) and was negatively regulated by the RNA helicase DHX9. Functionally, circ_0007379 suppressed CRC cell growth and metastasis in cell culture as well as in patient-derived organoid and xenograft models. Mechanistically, circ_0007379 acted as a scaffold to facilitate the processing of both pri-miR-320a and pre-miR-320a in a KSRP-dependent manner, leading to miR-320a maturation and subsequent repression of transcription factor RUNX1 expression. Thus, our findings establish a previously unrecognized function of circRNA in inhibiting CRC progression.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , Carcinogenesis/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...