Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(12): 3456-3459, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875644

ABSTRACT

The photorefractive (PR) effect plays a critical role in emerging photonic technologies, including dynamic volume holography and on-chip all-optical functionalities. Nevertheless, its slow response rate has posed a significant obstacle to its practical application. Here, we experimentally demonstrate the enhancement of the PR response rate in a high-Q thin-film lithium niobate (TFLN) microdisk under UV light irradiation. At an irradiation intensity of 30 mW/cm2, the PR effect achieves a high response bandwidth of approximately 256 kHz. By employing this UV-assisted PR effect, we have achieved rapid laser-cavity locking and self-stabilization, where perturbations are automatically compensated. This technique paves the way toward real-time dynamic holography, editable photonic devices on a lithium niobate platform, and high-speed all-optical information processing.

2.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612048

ABSTRACT

In order to optimize machined surface topography, this paper presents a novel algorithm for simulating the surface topography and predicting the surface roughness of a ball-end milling process. First, a discrete workpiece model was developed using the Z-map method, and the swept surface of a cutter edge was represented using triangular approximation. The workpiece surface was updated (i.e., material removal process) using the intersection between the vertical reference line and the triangular facet under a cutting judgement. Second, the proposed algorithm was verified by comparing the simulated 3D surface topography as well as 2D surface profile and average roughness (Sa) with experimental measurements. Then, numerical simulation examples planed by the Box-Behnken design methods were carried out to investigate the Sa in the ball-end milling operation. The correlations of Sa and cutting parameters were represented by a response surface reduced quadratic model based on the ANOVA results. Finally, the feed per tooth, radial depth of cut, and tilt and lead angles were optimized for improving the machining efficiency under the Sa constraints. This study presents an effective method for simulating surface topography and predicting the Sa to optimize the cutting parameters during ball-end milling process.

3.
Opt Lett ; 49(4): 854-857, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359199

ABSTRACT

Thin-film lithium niobate (TFLN) has been extensively investigated for a wide range of applications due to continuous advancements in its fabrication methods. The recent emergence of high-fidelity ferroelectric domain poling of TFLN provides an opportunity for achieving a precise pattern control of ferroelectric domains and a subsequent pattern transfer to the TFLN layer using hydrofluoric acid (HF). In this work, we present, to the best of our knowledge, the first demonstration of z-cut TFLN microdisks using a poling-assisted HF wet etching approach. By applying intense electric fields, we are able to induce a domain inversion in the TFLN with a designed microdisk pattern. A HF solution is subsequently utilized to transfer the inverted domain pattern to the TFLN layer with the selective etching of -z LN, ultimately revealing the microdisks.

4.
Light Sci Appl ; 13(1): 13, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38185633

ABSTRACT

Exceptional points (EPs), singularities of non-Hermitian systems, often exhibit exotic behaviors by engineering the balance between the system gain and loss. Now, EPs have been demonstrated to enable unidirectional perfect absorption/reflection at the visible light spectrum.

5.
Microbiol Res ; 279: 127570, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096690

ABSTRACT

Type VI secretion system (T6SS) plays an essential role in interspecies interactions and provides an advantage for a strain with T6SS in multispecies biofilms. However, how T6SS drives the bacterial community structure and functions in multispecies biofilms still needs to be determined. Using gene deletion and Illumina sequencing technique, we estimated bacterial community responses in multispecies biofilms to T6SS by introducing T6SS-containing Pseudomonas putida KT2440. Results showed that the niche structure shifts of multispecies biofilms were remarkably higher in the presence of T6SS than in the absence of T6SS. The presence of T6SS significantly drove the variation in microbial composition, reduced the alpha-diversity of bacterial communities in multispecies biofilms, and separately decreased and increased the relative abundance of Proteobacteria and Bacteroidota. Co-occurrence network analysis with inferred putative bacterial interactions indicated that P. putida KT2440 mainly displayed strong negative associations with the genera of Psychrobacter, Cellvibrio, Stenotrophomonas, and Brevundimonas. Moreover, the function redundancy index of the bacterial community was strikingly higher in the presence of T6SS than in the absence of T6SS, regardless of whether relative abundances of bacterial taxa were inhibited or promoted. Remarkably, the increased metabolic network similarity with T6SS-containing P. putida KT2440 could enhance the antibacterial activity of P. putida KT2440 on other bacterial taxa. Our findings extend knowledge of microbial adaptation strategies to potential bacterial weapons and could contribute to predicting biodiversity loss and change in ecological functions caused by T6SS.


Subject(s)
Pseudomonas putida , Type VI Secretion Systems , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Gene Deletion , Biofilms
6.
Appl Microbiol Biotechnol ; 107(21): 6591-6605, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688597

ABSTRACT

Climate change and anthropogenic exploitation have led to the gradual salinization of inland waters worldwide. However, the impacts of this process on the prokaryotic plankton communities and their role in biogeochemical cycles in the inland lake are poorly known. Here, we take a space-for-time substitution approach, using 16S rRNA gene amplicon sequencing and metagenomic sequencing. We analyzed the prokaryotic plankton communities of 11 lakes in northwest China, with average water salinities ranging from 0.002 to 14.370%. The results demonstrated that, among the various environmental parameters, salinity was the most important driver of prokaryotic plankton ß-diversity (Mantel test, r = 0.53, P < 0.001). (1) Under low salinity, prokaryotic planktons were assembled by stochastic processes and employed diverse halotolerant strategies, including the synthesis and uptake of compatible solutes and extrusion of Na+ or Li+ in exchange for H+. Under elevated salinity pressure, strong homogeneous selection meant that only planktonic prokaryotes showing an energetically favorable halotolerant strategy employing an Mnh-type Na+/H+ antiporter remained. (2) The decreasing taxonomic diversity caused by intense environmental filtering in high-salinity lakes impaired functional diversity related to substance metabolism. The prokaryotes enhanced the TCA cycle, carbon fixation, and low-energy-consumption amino acid biosynthesis in high-salinity lakes. (3) Elevated salinity pressure decreased the negative:positive cohesion and the modularity of the molecular ecology networks for the planktonic prokaryotes, indicating a precarious microbial network. Our findings provide new insights into plankton ecology and are helpful for the protecting of the biodiversity and function of inland lakes against the background of salinization. KEY POINTS: • Increased salinity enhances homogeneous selection in the microbial assembly. • Elevated salinity decreases the microbial co-occurrence networks stability. • High salinity damages the microbial function diversity.

7.
Opt Express ; 31(14): 22649-22659, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475370

ABSTRACT

Spatial light modulators enabling complex light field manipulation has opened up many opportunities in biomedical imaging, holographic display, and adaptive optics. However, traditional spatial light modulators do not allow multi-color operations simultaneously due to their physical constraints, while multi-color modulations are highly desirable in many applications. To overcome this limitation, we demonstrate a multi-color spatial complex light field modulation with a single binary hologram on digital micromirror devices (DMD). This method combines several neighboring micro-mirror pixels into a giant single superpixel, in which the light field's amplitude and phase can be individually determined by internal pixel combinations, and the dynamic range of phase modulation can exceed 2π for the single wavelength. As a result, this extra phase modulation range offers an additional degree of freedom for independent multi-wavelength light modulation. Based on this scheme, multi-color light modulations have been demonstrated in a 2D plane as well as in multiple 3D holographic planes. Moreover, a dual-colored Airy beam has been realized using the same technique. These results bring complex light modulation into a multi-color regime, paving the way for practical applications in information display, imaging, and optical trapping.

8.
Bioresour Technol ; 386: 129504, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468004

ABSTRACT

Elucidating ecological mechanism underlying phosphorus transformation mediated by phosphate-solubilizing bacteria (PSB) during manure composting is an important but rarely investigated subject. The research objective is to disentangle ecological functions of the inoculation of PSB Pseudomonas sp. WWJ-22 during chicken manure composting based on gene quantification and amplicon sequencing. There are large dynamic changes in phosphorus fractions, gene abundances, and bacterial community structure. The PSB addition notably increased available phosphorus from 0.29-0.89 g kg-1 to 0.49-1.39 g kg-1 and significantly affected phosphorus fractionation. The PSB inoculation significantly affected composition of nutrient-cycling functional genes (NCFGs), and notably influenced bacterial community composition and function. Compost bacteria showed significant phylogenetic signals in response to phosphorus fractions, and stochastic processes dominated bacterial community assembly. Results emphasized that PSB addition increased functional redundancy, phylogenetic conservatism, and stochasticity-dominated assembly of bacterial community. Overall, findings highlight NCFG diversity can be a bio-indicator to mirror phosphorus transformation.


Subject(s)
Composting , Phosphorus , Animals , Manure , Chickens , Phylogeny , Soil/chemistry , Phosphates/chemistry , Bacteria/genetics
9.
Water Res ; 243: 120344, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482008

ABSTRACT

Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.


Subject(s)
Ecosystem , Lakes , Lakes/microbiology , Phylogeny , Aquatic Organisms , Bacteria , China
10.
Environ Microbiol ; 25(12): 2746-2760, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37190986

ABSTRACT

The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.


Subject(s)
Ecosystem , Plastics , Bacteria/genetics , Stochastic Processes
11.
Bioresour Technol ; 373: 128707, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746213

ABSTRACT

Understanding ecological roles of phosphate-solubilizing bacteria (PSB) is important to optimize composting systems. Illumina MiSeq sequencing, gene quantitation, and statistical analyses were employed to explore ecological mechanisms underlying available phosphorus (AP) facilitation during composting with the inoculation of PSB Pseudomonas sp. WWJ-22. Results displayed that the inoculation of PSB significantly increased AP from 0.83 to 1.23 g kg-1, and notably increased abundances of phosphorus-cycling genes as well as numbers of PSB mineralizing phytate and lecithin. The PSB addition significantly affected compost bacterial community composition, and phosphorus factions and phosphorus-cycling genes independently explained 25.4 % and 25.0 % bacterial compositional dissimilarity. Stochastic and homogenizing processes affected more on bacterial community assembly, and rare bacteria potentially mediated organic phosphorus mineralization. These results emphasized that phosphorus fractions, PSB number, phosphorus-cycling gene abundance, and bacterial community composition contributed differently to phosphorus availability. Findings highlight ecological roles of exogenous PSB during chicken manure composting.


Subject(s)
Composting , Phosphorus , Animals , Phosphates , Chickens , Manure , Soil , Bacteria/genetics
12.
Sci Rep ; 13(1): 2750, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797346

ABSTRACT

Wavefront manipulations have enabled wide applications across many interdisciplinary fields ranging from optics and microwaves to acoustics. However, the realizations of such functional surfaces heavily rely on micro/nanofabrication to define the structured surfaces, which are fixed and only work within a limited spectrum. To address these issues, previous attempts combining tunable materials like liquid crystal or phase-change ones onto the metasurfaces have permitted extra tunability and working spectra, however, these additional layers bring in inevitable loss and complicate the fabrication. Here we demonstrate a fabrication-free tunable flat slab using a nonlinear four-wave mixing process. By wavefront-shaping the pump onto the flat slab, we can successfully tune the effective nonlinear refraction angle of the emitting FWM beams according to the phase-matching condition. In this manner, a focusing and a defocusing nonlinear of FWM beam through the flat slab have been demonstrated with a converging and a diverging pump wavefronts, respectively. Furthermore, a beam steering scheme over a 20° angle has been realized through a non-degenerate four-wave mixing process by introducing a second pump. These features open up a door to manipulating light propagation in an all-optical manner, paving the way to more functional and tunable flat slab devices in the applications of imaging and all-optical information.

13.
Tob Induc Dis ; 21: 18, 2023.
Article in English | MEDLINE | ID: mdl-36762262

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a disease caused by many factors including occupational and environmental factors. Secondhand smoke (SHS) can affect cognitive function. However, there is limited recent epidemiological research on how SHS and occupational factors affect AD in Zhejiang province. METHODS: We established a cohort of an AD high-risk population. In 2018, a cohort of 1742 elderly aged ≥60 years was established. In 2020, the cohort was followed up, and a total of 1545 people participated in the two surveys. Data collection included demographic and economic information such as age, gender, occupation, education level etc., and relative health behavior information such as smoking, drinking and tea drinking, etc. Basic physical examination data included height, weight, blood pressure, etc. At the same time, related cognitive status was assessed. Cox proportional hazards regression models, both unadjusted and adjusted models, were used to determine associations between cohort characteristics and AD. RESULTS: The results showed that SHS exposure and occupational characteristics were associated with an increased risk of cognitive impairments in seniors. Subgroups who used to work as blue-collar workers, who never worked, who kept standing for most of the time at work, and who were engaged in hard physical labor prior to retirement, had high incidence rates of AD. CONCLUSIONS: It was revealed that SHS, standing for most of the time and hard physical labor were associated risk factors of AD among seniors, compared with white-collar work. We recommend that the government establish a community supervisory mechanism to persuade smokers to quit or control smoking.

14.
Opt Lett ; 48(3): 755-758, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723581

ABSTRACT

Two coupled resonance modes can lead to exotic transmission spectra due to internal interference processes. Examples include electromagnetically induced transparency (EIT) in atoms and mode splitting in optics. The ability to control individual modes plays a crucial role in controlling such transmission spectra for practical applications. Here we experimentally demonstrate a controllable EIT-like mode splitting in a single microcavity using a double-port excitation. The mode splitting caused by internal coupling between two counter-propagating resonances can be effectively controlled by varying the power of the two inputs, as well as their relative phase. Moreover, the presence of asymmetric scattering in the microcavity leads to chiral behaviors in the mode splitting in the two propagating directions, manifesting itself in terms of a Fano-like resonance mode. These results may offer a compact platform for a tunable device in all-optical information processing.

15.
Sci Total Environ ; 867: 161529, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36634774

ABSTRACT

Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.


Subject(s)
Composting , Ecosystem , Swine , Animals , Manure , Soil/chemistry , Phosphorus , Nitrogen/analysis , Carbon
16.
Microb Ecol ; 85(4): 1179-1189, 2023 May.
Article in English | MEDLINE | ID: mdl-35355087

ABSTRACT

Core microbiota is shared microbial taxa within the same habitat, which is important for understanding the stable and consistent components of the complex microbial assembly. However, information on the microplastic core bacteria from the river ecosystems is poor. Here, we investigated the composition and function of microplastic core bacteria from the Three Gorges Reservoir area along the approximate 662 km of the Yangtze River via full-length 16S rRNA gene sequencing, compared with those in water, sediment, and soil. The results showed that the spatial turnover of bacterial communities in four habitats supported deterministic processes dominated by niche differentiation, which shaped their core bacteria. The composition and function of microplastic core bacteria were significantly different from those in the other three habitats. Rhodobacteraceae was the main component of microplastic core bacteria, while the main component of core bacteria in water, sediment, and soil were Burkholderiaceae (21.90%), Burkholderiaceae (5.01%), Nitrosomonadaceae (4.61%), respectively. Furthermore, microplastic core bacteria had stronger geographic limitations along the Yangtze River in the Three Gorges Reservoir area. Stronger geographic limitations shaped the rapid community turnover and a potentially more connected network for the microplastic core bacteria than water, sediment, and soil. More importantly, microplastic core bacteria had strong potential functions of drug resistance and could cause risks to ecosystems and human health. Microplastic core bacteria were mainly influenced by sediment core bacteria, although the bacteria colonizing on microplastics could be from all the contact environments and original sources. These findings provide important insights into the composition, function, and association of microplastic core bacteria with their surrounding environment.


Subject(s)
Microbiota , Microplastics , Humans , Plastics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil , Water
17.
Environ Microbiol ; 25(3): 661-674, 2023 03.
Article in English | MEDLINE | ID: mdl-36527341

ABSTRACT

Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Eukaryota , Phylogeny , Plankton , Water
18.
Bioresour Technol ; 368: 128335, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403913

ABSTRACT

Deciphering ecological functions of alkaline phosphatase (phoD)-harboring bacteria in composting systems is crucial but poorly understood. High-throughput sequencing, gene quantification, and statistical analyses were applied to investigate effects of abundance and diversity of phoD-harboring bacteria (PHB) on phosphorus availability during swine manure composting. Results showed that available phosphorus notably increased from 0.5 to 1.43 g kg-1, and physicochemical properties and enzyme activities affected PHB community composition. Phylogenetic signals of PHB responded notably to temperature and phosphorus components, and stochasticity (94.2 %) dominated community assembly. Abundance and diversity of PHB directly and indirectly influenced phosphorus availability, and rare PHB mediated organic phosphorus mineralization. A phosphate-solubilizing bacterium (PSB) Pseudomonas sp. WWJ-22 isolated from compost displayed good efficiency in mineralizing lecithin, demonstrating the highest phosphorus-solubilizing level of 116.3 mg L-1. This study highlights ecological roles of PHB on phosphorus availability and provides a potential PSB candidate for composting.


Subject(s)
Composting , Swine , Animals , Manure , Alkaline Phosphatase , Phosphorus , Phylogeny , Bacteria/genetics , Coloring Agents , Phosphates
19.
mLife ; 2(1): 89-100, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38818339

ABSTRACT

Deciphering biogeographic patterns of microorganisms is important for evaluating the maintenance of microbial diversity with respect to the ecosystem functions they drives. However, ecological processes shaping distribution patterns of microorganisms across large spatial-scale watersheds remain largely unknown. Using Illumina sequencing and multiple statistical methods, we characterized distribution patterns and maintenance diversity of microorganisms (i.e., archaea, bacteria, and fungi) in soils and sediments along the Yangtze River. Distinct microbial distribution patterns were found between soils and sediments, and microbial community similarity significantly decreased with increasing geographical distance. Physicochemical properties showed a larger effect on microbial community composition than geospatial and climatic factors. Archaea and fungi displayed stronger species replacements and weaker environmental constraints in soils than that in sediments, but opposite for bacteria. Archaea, bacteria, and fungi in soils showed broader environmental breadths and stronger phylogenetic signals compared to those in sediments, suggesting stronger environmental adaptation. Stochasticity dominated community assemblies of archaea and fungi in soils and sediments, whereas determinism dominated bacterial community assembly. Our results have therefore highlighted distinct microbial distribution patterns and diversity maintenance mechanisms between soils and sediments, and emphasized important roles of species replacement, environmental adaptability, and ecological assembly processes on microbial landscape. Our findings are helpful in predicting loss of microbial diversity in the Yangtze River Basin, and might assist the establishment of environmental policies for protecting fragile watersheds.

20.
Imeta ; 2(1): e84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38868338

ABSTRACT

Aggravated algal blooms potentially decreased environmental heterogeneity. Different strategies of planktonic bacteria and eukaryotes in response to aggravated algal blooms. Environmental constraints of plankton showed different patterns over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...