Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 45(10): 2163-2173, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38834683

ABSTRACT

Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Antineoplastic Agents , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Drug Resistance, Neoplasm/drug effects , Animals , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Drug Discovery , Structure-Activity Relationship , Piperidines/pharmacology , Piperidines/therapeutic use , Piperidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL