Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Article in English | MEDLINE | ID: mdl-38960798

ABSTRACT

BACKGROUND: The use of immunotherapy in mismatch repair proficient colorectal cancer (pMMR-CRC) or pancreatic adenocarcinoma (PDAC) is associated with limited efficacy. DAPPER (NCT03851614) is a phase 2, basket study randomizing patients with pMMR CRC or PDAC to durvalumab with olaparib (durvalumab + olaparib) or durvalumab with cediranib (durvalumab + cediranib). METHODS: PDAC or pMMR-CRC patients were randomized to either durvalumab+olaparib (arm A), or durvalumab + cediranib (arm B). Co-primary endpoints included pharmacodynamic immune changes in the tumor microenvironment (TME) and safety. Objective response rate, progression-free survival (PFS) and overall survival (OS) were determined. Paired tumor samples were analyzed by multiplexed immunohistochemistry and RNA-sequencing. RESULTS: A total of 31 metastatic pMMR-CRC patients were randomized to arm A (n = 16) or B (n = 15). In 28 evaluable patients, 3 patients had stable disease (SD) (2 patients treated with durvalumab + olaparib and 1 patient treated with durvalumab + cediranib) while 25 had progressive disease (PD). Among patients with PDAC (n = 19), 9 patients were randomized to arm A and 10 patients were randomized to arm B. In 18 evaluable patients, 1 patient had a partial response (unconfirmed) with durvalumab + cediranib, 1 patient had SD with durvalumab + olaparib while 16 had PD. Safety profile was manageable and no grade 4-5 treatment-related adverse events were observed in either arm A or B. No significant changes were observed for CD3+/CD8+ immune infiltration in on-treatment biopsies as compared to baseline for pMMR-CRC and PDAC independent of treatment arms. Increased tumor-infiltrating lymphocytes at baseline, low baseline CD68+ cells and different immune gene expression signatures at baseline were associated with outcomes. CONCLUSIONS: In patients with pMMR-CRC or PDAC, durvalumab + olaparib and durvalumab + cediranib showed limited antitumor activity. Different immune components of the TME were associated with treatment outcomes.

2.
Oncoimmunology ; 13(1): 2349347, 2024.
Article in English | MEDLINE | ID: mdl-38746870

ABSTRACT

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Subject(s)
Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
3.
J Immunol ; 212(12): 1904-1912, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38668728

ABSTRACT

NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-ß1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-ß1 could also induce immunosuppressive NK-like cells. First, we found that TGF-ß1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-ß-dependent manner. Interestingly, TGF-ß1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-ß1-rich environments.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Transforming Growth Factor beta1 , Humans , Killer Cells, Natural/immunology , Interleukin-15/immunology , Interleukin-15/metabolism , Transforming Growth Factor beta1/metabolism , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , CD56 Antigen/metabolism , Cells, Cultured , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocyte Activation/immunology
4.
Nat Commun ; 15(1): 1094, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321065

ABSTRACT

Immunotherapies targeting PD-1/PD-L1 are now widely used in the clinic to treat a variety of malignancies. While most of the research on T cell exhaustion and PD-1 blockade has been focused on conventional αß T cells, the contribution of innate-like T cells such as γδ T cells to anti-PD-1/PD-L1 mediated therapy is limited. Here we show that tumor reactive γδ T cells respond to PD-1 blockade in a Merkel cell carcinoma (MCC) patient experiencing a complete response to therapy. We find clonally expanded γδ T cells in the blood and tumor after pembrolizumab treatment, and this Vγ2Vδ1 clonotype recognizes Merkel cancer cells in a TCR-dependent manner. Notably, the intra-tumoral γδ T cells in the MCC patient are characterized by higher expression of PD-1 and TIGIT, relative to conventional CD4 and CD8 T cells. Our results demonstrate that innate-like T cells could also contribute to an anti-tumor response after PD-1 blockade.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen , CD8-Positive T-Lymphocytes/metabolism , Skin Neoplasms/pathology
5.
Clin Cancer Res ; 29(20): 4128-4138, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37566240

ABSTRACT

PURPOSE: Non-inflamed (cold) tumors such as leiomyosarcoma do not benefit from immune checkpoint blockade (ICB) monotherapy. Combining ICB with angiogenesis or PARP inhibitors may increase tumor immunogenicity by altering the immune cell composition of the tumor microenvironment (TME). The DAPPER phase II study evaluated the safety, immunologic, and clinical activity of ICB-based combinations in pretreated patients with leiomyosarcoma. PATIENTS AND METHODS: Patients were randomized to receive durvalumab 1,500 mg IV every 4 weeks with either olaparib 300 mg twice a day orally (Arm A) or cediranib 20 mg every day orally 5 days/week (Arm B) until unacceptable toxicity or disease progression. Paired tumor biopsies, serial radiologic assessments and stool collections were performed. Primary endpoints were safety and immune cell changes in the TME. Objective responses and survival were correlated with transcriptomic, radiomic, and microbiome parameters. RESULTS: Among 30 heavily pretreated patients (15 on each arm), grade ≥ 3 toxicity occurred in 3 (20%) and 2 (13%) on Arms A and B, respectively. On Arm A, 1 patient achieved partial response (PR) with increase in CD8 T cells and macrophages in the TME during treatment, while 4 had stable disease (SD) ≥ 6 months. No patients on Arm B achieved PR or SD ≥ 6 months. Transcriptome analysis showed that baseline M1-macrophage and B-cell activity were associated with overall survival. CONCLUSIONS: Durvalumab plus olaparib increased immune cell infiltration of TME with clinical benefit in some patients with leiomyosarcoma. Baseline M1-macrophage and B-cell activity may identify patients with leiomyosarcoma with favorable outcomes on immunotherapy and should be further evaluated.

6.
Cancer Immunol Immunother ; 72(7): 2375-2392, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36943460

ABSTRACT

Immunotherapeutic strategies aimed at enhancing tumor cell killing by tumor-specific T cells hold great potential for reducing tumor burden and prolonging survival of cancer patients. Although many potential tumor antigens have been described, identifying relevant targets when designing anti-cancer vaccines or targeted cell therapies remains a challenge. To identify novel, potentially immunogenic candidate tumor antigens, we performed integrated tumor transcriptomic, seromic, and proteomic analyses of high grade serous ovarian cancer (HGSC) patient tumor samples. We identified tumor neo-antigens and over-expressed antigens using whole exome and RNA sequencing and examined these in relation to patient-matched auto-antibody repertoires. Focusing on MHC class I epitopes recognized by CD8+ T cells, HLA-binding epitopes were identified or predicted from the highly expressed, mutated, or auto-antibody target antigen, or MHC-associated peptides (MAPs). Recognition of candidate antigenic peptides was assessed within the tumor-infiltrating T lymphocyte (TIL) population expanded from each patient. Known tumor-associated antigens (TAA) and cancer/testis antigens (CTA) were commonly found in the auto-antibody and MAP repertoires and CD8+ TILs recognizing epitopes from these antigens were detected, although neither expression level nor the presence of auto-antibodies correlated with TIL recognition. Auto-antibodies against tumor-mutated antigens were found in most patients, however, no TIL recognition of the highest predicted affinity neo-epitopes was detected. Using high expression level, auto-antibody recognition, and epitope prediction algorithms, we identified epitopes in 5 novel antigens (MOB1A, SOCS3, TUBB, PRKAR1A, CCDC6) recognized by HGSC patient TILs. Furthermore, selection of epitopes from the MAP repertoire identified 5 additional targets commonly recognized by multiple patient TILs. We find that the repertoire of TIL specificities includes recognition of highly expressed and immunogenic self-antigens that are processed and presented by tumors. These results indicate an ongoing autoimmune response against a range of self-antigens targeted by HGSC TILs.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Ovarian Neoplasms , Male , Humans , Female , Epitopes/metabolism , CD8-Positive T-Lymphocytes , Proteomics , Multiomics , Antigens, Neoplasm , Peptides , Autoantigens , Epitopes, T-Lymphocyte
7.
Clin Cancer Res ; 29(10): 1869-1878, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36826995

ABSTRACT

PURPOSE: Proliferation of T-follicular helper (TFH) CD4+ T cells is a postulated pathogenic mechanism for T-cell non-Hodgkin lymphomas (T-NHL). The inducible T-cell costimulator (ICOS) is highly expressed by TFH, representing a potential target. MEDI-570 is a monoclonal antibody against ICOS, which eliminates ICOS+ cells in preclinical models. PATIENTS AND METHODS: We report the safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of MEDI-570 in T-NHL. NCI-9930 is a phase I, first-in-human study of MEDI-570 in relapsed/refractory malignant T-NHL known to express ICOS. MEDI-570 was administered intravenously every 3 weeks for up to 12 cycles. Primary endpoints were safety, dose-limiting toxicities (DLT), and recommended phase II dose (RP2D). Secondary and exploratory endpoints included efficacy parameters and various correlative studies. This study is supported by the National Cancer Institute (NCT02520791). RESULTS: Twenty-three patients were enrolled and received MEDI-570 at five dose levels (0.01-3 mg/kg). Sixteen (70%) had angioimmunoblastic T-cell lymphoma (AITL); median age was 67 years (29-86) and the median prior lines of therapies was 3 (1-16). Most common grade 3 or 4 adverse events were decreased CD4+ T cells (57%), lymphopenia (22%), anemia (13%), and infusion-related reactions (9%). No DLTs were observed. The RP2D was determined at 3 mg/kg. Analysis of T-cell subsets showed reductions in CD4+ICOS+ T cells reflecting its effects on TFH cells. The response rate in AITL was 44%. CONCLUSIONS: MEDI-570 was well tolerated and showed promising clinical activity in refractory AITL. MEDI-570 resulted in sustained reduction of ICOS+ T lymphocytes.


Subject(s)
Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Humans , Aged , T Follicular Helper Cells , CD4-Positive T-Lymphocytes , Antibodies, Monoclonal , Phenotype , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/pathology , T-Lymphocytes, Helper-Inducer , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/pathology , Inducible T-Cell Co-Stimulator Protein
8.
STAR Protoc ; 3(3): 101643, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36052346

ABSTRACT

This is a cytometry by time-of-flight (CyTOF) staining protocol for hematopoietic-derived cells, that leverages live-cell barcoding using receptor-type tyrosine-protein phosphatase C (CD45) antibodies conjugated to metal isotopes in combination with DNA-based palladium barcoding to multiplex up to 40 samples. In this protocol, DNA-based barcoding is performed before surface and intracellular immunostaining, which reduces the batch effects that result from day-to-day variations in staining and instrument sensitivity. This protocol also reduces antibody consumption and eliminates the need for repeated instrument adjustment.


Subject(s)
Antibodies , Isotopes , Flow Cytometry/methods , Palladium , Staining and Labeling
9.
Nat Immunol ; 23(8): 1273-1283, 2022 08.
Article in English | MEDLINE | ID: mdl-35835962

ABSTRACT

Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.


Subject(s)
Interferon Type I , Humans , Immunotherapy , Inflammation , T-Lymphocytes
10.
Trends Immunol ; 43(5): 379-390, 2022 05.
Article in English | MEDLINE | ID: mdl-35379580

ABSTRACT

The cancer research community continues to search for additional biomarkers of response and resistance to immune checkpoint treatment (ICT). The ultimate goal is to direct the use of ICT in patients whose tumors are most likely to benefit to achieve a refinement that is equivalent to that of a genotype-matched targeted treatment. Dissecting the mechanisms of ICT resistance can help us characterize ICT nonresponders more efficiently. In this opinion, we argue that there may be additional knowledge gained about immune evasion in cancer by analyzing the loss of the human 9p21.3 locus; as an example, we highlight findings of 9p21.3 loss from the investigator-initiated, pan-cancer INSPIRE study, in which patients were treated with pembrolizumab (anti-PD-1 antibody) ICT.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy
11.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35288469

ABSTRACT

BACKGROUND: Combining immunotherapy and antiangiogenic agents is a promising treatment strategy in endometrial cancer. To date, no biomarkers for response have been identified and data on post-immunotherapy progression are lacking. We explored the combination of a checkpoint inhibitor (nivolumab) and an antiangiogenic agent (cabozantinib) in immunotherapy-naïve endometrial cancer and in patients whose disease progressed on previous immunotherapy with baseline biopsy for immune profiling. PATIENTS AND METHODS: In this phase II trial (ClinicalTrials.gov NCT03367741, registered December 11, 2017), women with recurrent endometrial cancer were randomized 2:1 to nivolumab with cabozantinib (Arm A) or nivolumab alone (Arm B). The primary endpoint was Response Evaluation Criteria in Solid Tumors-defined progression-free survival (PFS). Patients with carcinosarcoma or prior immune checkpoint inhibitor received combination treatment (Arm C). Baseline biopsy and serial peripheral blood mononuclear cell (PBMC) samples were analyzed and associations between patient outcome and immune data from cytometry by time of flight (CyTOF) and PBMCs were explored. RESULTS: Median PFS was 5.3 (90% CI 3.5 to 9.2) months in Arm A (n=36) and 1.9 (90% CI 1.6 to 3.4) months in Arm B (n=18) (HR=0.59, 90% CI 0.35 to 0.98; log-rank p=0.09, meeting the prespecified statistical significance criteria). The most common treatment-related adverse events in Arm A were diarrhea (50%) and elevated liver enzymes (aspartate aminotransferase 47%, alanine aminotransferase 42%). In-depth baseline CyTOF analysis across treatment arms (n=40) identified 35 immune-cell subsets. Among immunotherapy-pretreated patients in Arm C, non-progressors had significantly higher proportions of activated tissue-resident (CD103+CD69+) ɣδ T cells than progressors (adjusted p=0.009). CONCLUSIONS: Adding cabozantinib to nivolumab significantly improved outcomes in heavily pretreated endometrial cancer. A subgroup of immunotherapy-pretreated patients identified by baseline immune profile and potentially benefiting from combination with antiangiogenics requires further investigation.


Subject(s)
Endometrial Neoplasms , Nivolumab , Anilides/pharmacology , Anilides/therapeutic use , Endometrial Neoplasms/drug therapy , Female , Humans , Leukocytes, Mononuclear , Nivolumab/pharmacology , Nivolumab/therapeutic use , Pyridines
12.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34599023

ABSTRACT

BACKGROUND: Sitravatinib, a tyrosine kinase inhibitor that targets TYRO3, AXL, MERTK and the VEGF receptor family, is predicted to increase the M1 to M2-polarized tumor-associated macrophages ratio in the tumor microenvironment and have synergistic antitumor activity in combination with anti-programmed death-1/ligand-1 agents. SNOW is a window-of-opportunity study designed to evaluate the immune and molecular effects of preoperative sitravatinib and nivolumab in patients with oral cavity squamous cell carcinoma. METHODS: Patients with newly-diagnosed untreated T2-4a, N0-2 or T1 >1 cm-N2 oral cavity carcinomas were eligible. All patients received sitravatinib 120 mg daily from day 1 up to 48 hours pre-surgery and one dose of nivolumab 240 mg on day 15. Surgery was planned between day 23 and 30. Standard of care adjuvant radiotherapy was given based on clinical stage. Tumor photographs, fresh tumor biopsies and blood samples were collected at baseline, at day 15 after sitravatinib alone, and at surgery after sitravatinib-nivolumab combination. Tumor flow cytometry, multiplex immunofluorescence staining and single-cell RNA sequencing (scRNAseq) were performed on tumor biopsies to study changes in immune-cell populations. Tumor whole-exome sequencing and circulating tumor DNA and cell-free DNA were evaluated at each time point. RESULTS: Ten patients were included. Grade 3 toxicity occurred in one patient (hypertension); one patient required sitravatinib dose reduction, and one patient required discontinuation and surgery delay due to G2 thrombocytopenia. Nine patients had clinical-to-pathological downstaging, with one complete response. Independent pathological treatment response (PTR) assessment confirmed a complete PTR and two major PTRs. With a median follow-up of 21 months, all patients are alive with no recurrence. Circulating tumor DNA and cell-free DNA dynamics correlated with clinical and pathological response and distinguished two patient groups with different tumor biological behavior after sitravatinib alone (1A) versus sitravatinib-nivolumab (1B). Tumor immunophenotyping and scRNAseq analyses revealed differential changes in the expression of immune cell populations and sitravatinib-targeted and hypoxia-related genes in group 1A vs 1B patients. CONCLUSIONS: The SNOW study shows sitravatinib plus nivolumab is safe and leads to deep clinical and pathological responses in oral cavity carcinomas. Multi-omic biomarker analyses dissect the differential molecular effects of sitravatinib versus the sitravatinib-nivolumab and revealed patients with distinct tumor biology behavior. TRIAL REGISTRATION NUMBER: NCT03575598.


Subject(s)
Anilides/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mouth Neoplasms/drug therapy , Nivolumab/therapeutic use , Pyridines/therapeutic use , Aged , Anilides/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Female , Humans , Male , Middle Aged , Nivolumab/pharmacology , Preoperative Period , Pyridines/pharmacology
13.
Nat Commun ; 12(1): 5137, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446728

ABSTRACT

Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Circulating Tumor DNA/genetics , Neoplasms/drug therapy , Neoplasms/genetics , BRCA2 Protein/genetics , BRCA2 Protein/immunology , Circulating Tumor DNA/metabolism , DNA Copy Number Variations , Drug Resistance, Neoplasm , Group II Phospholipases A2/genetics , Group II Phospholipases A2/immunology , Humans , Neoplasms/immunology , Prospective Studies , Tumor Burden , Tumor Escape/drug effects , Exome Sequencing
14.
Semin Immunol ; 43: 101300, 2019 06.
Article in English | MEDLINE | ID: mdl-31771760

ABSTRACT

Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/ß present as ideal candidate broad-spectrum antivirals.


Subject(s)
Coronavirus/physiology , Disease Outbreaks , Ebolavirus/physiology , Influenza A Virus, H5N1 Subtype/physiology , Interferons/metabolism , Virus Diseases/immunology , Animals , Antiviral Agents/therapeutic use , Communicable Disease Control , Host-Pathogen Interactions , Humans , Virus Replication
15.
Oncotarget ; 10(31): 2947-2958, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31105877

ABSTRACT

Immunotherapy has shown modest activity in metastatic breast cancer (MBC). In this phase I dose escalation study, we assessed safety of tremelimumab, a humanized anti-CTLA4 monoclonal antibody, at starting dose 3 mg/kg, on the third day of palliative radiotherapy (2000cGy in 5 daily fractions) in patients with MBC. Primary objective was to determine the maximum tolerated dose (MTD) of tremelimumab combined with RT. Secondary objective was to assess response. Among 6 patients enrolled between July 2010 and October 2011, 5 had hormone receptor-positive MBC, 1 had triple negative MBC. Median age was 45 years. Common toxicities included lymphopenia (83%), fatigue (50%) and rash (33%). One dose-limiting toxicity occurred at 6 mg/kg, however the trial closed before MTD could be determined. One patient discontinued treatment due to a pathological fracture. Best response was stable disease (SD), 1 patient had SD for >6 months. Median follow up was 27.0 months. Median OS was 50.8 months, with 1 patient surviving >8 years. Peripheral blood mononuclear cell (PBMC) profiles showed increasing proliferating (Ki67+) Treg cells 1 week post treatment in 5 patients. Overall, tremelimumab at 3 mg/kg combined with RT appears to be a tolerable treatment strategy. Further studies are needed to optimize this combination approach.

16.
J Immunother Cancer ; 7(1): 357, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892360

ABSTRACT

BACKGROUND: B7-H3 and B7-H4 are highly expressed by many human malignancies making them attractive immunotherapeutic targets. However, their expression patterns and immune contexts in epithelial ovarian cancer have not been well characterized. METHODS: We used flow cytometry, immunohistochemistry, and genomic analyses to determine the patterns of B7-H3, B7-H4, and PD-L1 expression by tumor, stromal, and immune cells in the ovarian tumor microenvironment (TME). We analyzed immune cell frequency and expression of PD-1, TIM3, LAG3, ICOS, TIA-1, granzyme B, 2B4, CD107a, and GITR on T cells; CD20, CD22, IgD, BTLA, and CD27 on B cells; CD16 on monocytes; and B7-H3, B7-H4, PD-L1, PD-L2, ICOSL, CD40, CD86, and CLEC9a on antigen-presenting cells by flow cytometry. We determined intratumoral cellular location of immune cells using immunohistochemistry. We compared differences in immune infiltration in tumors with low or high tumor-to-stroma ratio and in tumors from the same or unrelated patients. RESULTS: On non-immune cells, B7-H4 expression was restricted to tumor cells whereas B7-H3 was expressed by both tumor and stromal cells. Stromal cells of the ovarian TME expressed high levels of B7-H3 compared to tumor cells. We used this differential expression to assess the tumor-to-stroma ratio of ovarian tumors and found that high tumor-to-stroma ratio was associated with increased expression of CD16 by monocytes, increased frequencies of PD-1high CD8+ T cells, increased PD-L1 expression by APCs, and decreased CLEC9a expression by APCs. We found that expression of PD-L1 or CD86 on APCs and the proportion of PD-1high CD4+ T cells were strongly correlated on immune cells from tumors within the same patient, whereas expression of CD40 and ICOSL on APCs and the proportion of PD-1high CD8+ T cells were not. CONCLUSIONS: This study provides insight into the expression patterns of B7-H3 and B7-H4 in the ovarian TME. Further, we demonstrate an association between the tumor-to-stroma ratio and the phenotype of tumor-infiltrating immune cells. We also find that some but not all immune parameters show consistency between peritoneal metastatic sites. These data have implications for the design of immunotherapies targeting these B7 molecules in epithelial ovarian cancer.


Subject(s)
B7 Antigens/genetics , Carcinoma, Ovarian Epithelial/etiology , Carcinoma, Ovarian Epithelial/metabolism , Gene Expression , Ovarian Neoplasms/etiology , Ovarian Neoplasms/metabolism , Stromal Cells/metabolism , B7 Antigens/metabolism , Biomarkers, Tumor , Carcinoma, Ovarian Epithelial/diagnosis , Female , Humans , Immunohistochemistry , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Ovarian Neoplasms/diagnosis , Stromal Cells/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
17.
J Interferon Cytokine Res ; 37(8): 331-341, 2017 08.
Article in English | MEDLINE | ID: mdl-28514196

ABSTRACT

Influenza A viruses (IAVs) cause mild to severe infections in humans with considerable socioeconomic and global health consequences. The host interferon (IFN)-α/ß response, critical as the first line of defense against foreign pathogens, is induced upon detection of IAV genomic RNA in infected cells by host innate pattern recognition receptors. IFN-α/ß production and subsequent activation of cell signaling result in the expression of antiviral IFN-stimulated genes whose products target various stages of the IAV life cycle to inhibit viral replication and the spread of infection and establish an antiviral state. IAVs, however, encode a multifunctional virulence factor, nonstructural protein 1 (NS1), that directly antagonizes the host IFN-α/ß response to support viral replication. In this review, we highlight the mechanisms by which NS1 suppresses IFN-α/ß production and subsequent cell signaling, and consider, therefore, the potential for recombinant IAVs lacking NS1 to be used as live-attenuated vaccines.


Subject(s)
Influenza Vaccines/immunology , Interferon-alpha/metabolism , Interferon-beta/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Humans , Protein Binding , Virus Replication
18.
Viruses ; 9(5)2017 05 12.
Article in English | MEDLINE | ID: mdl-28498306

ABSTRACT

The non-structural protein, NS1, is a virulence factor encoded by influenza A viruses (IAVs). In this report, we provide evidence that the conserved residue, tyrosine (Y) 84, in a conserved putative SH2-binding domain in A/Duck/Hubei/2004/L-1 [H5N1] NS1 is critical for limiting an interferon (IFN) response to infection. A phenylalanine (F) substitution of this Y84 residue abolishes NS1-mediated downregulation of IFN-inducible STAT phosphorylation, and surface IFNAR1 expression. Recombinant IAV (rIAV) [H1N1] expressing A/Grey Heron/Hong Kong/837/2004 [H5N1] NS1-Y84F (rWSN-GH-NS1-Y84F) replicates to lower titers in human lung epithelial cells and is more susceptible to the antiviral effects of IFN-ß treatment compared with rIAV expressing the intact H5N1 NS1 (rWSN-GH-NS1-wt). Cells infected with rWSN-GH-NS1-Y84F express higher levels of IFN stimulated genes (ISGs) associated with an antiviral response compared with cells infected with rWSN-GH-NS1-wt. In mice, intranasal infection with rWSN-GH-NS1-Y84F resulted in a delay in onset of weight loss, reduced lung pathology, lower lung viral titers and higher ISG expression, compared with mice infected with rWSN-GH-NS1-wt. IFN-ß treatment of mice infected with rWSN-GH-NS1-Y84F reduced lung viral titers and increased lung ISG expression, but did not alter viral titers and ISG expression in mice infected with rWSN-GH-NS1-wt. Viewed altogether, these data suggest that the virulence associated with this conserved Y84 residue in NS1 is, in part, due to its role in regulating the host IFN response.


Subject(s)
Influenza A Virus, H5N1 Subtype/metabolism , Influenza, Human/virology , Interferons/drug effects , Signal Transduction/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Diseases/metabolism , A549 Cells , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Dogs , Epithelial Cells/virology , Fibroblasts , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/drug effects , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/physiology , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza A virus/physiology , Interferon-beta , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Neutrophils/pathology , Neutrophils/virology , Proto-Oncogene Proteins c-akt/metabolism , Reverse Genetics , Transfection , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/physiology , Virulence , Virulence Factors
19.
Virology ; 508: 170-179, 2017 08.
Article in English | MEDLINE | ID: mdl-28554059

ABSTRACT

Influenza A virus (IAV) non-structural protein 1 (NS1) suppresses host innate immune responses by inhibiting type I interferon (IFN) production. We provide evidence that residues F103 and M106 in the CPSF4-binding domain of A/HK/1/68 [H3N2] NS1 contribute to post-transcriptional inhibition of antiviral IFN-stimulated genes (ISGs), thereby suppressing an antiviral type I IFN response. Recombinant (r) IAVs encoding F103L and M106I mutations in NS1 replicate to significantly lower viral titers in human A549 lung epithelial cells and primary type II alveolar cells. In A549 cells, rIAVs encoding these mutant NS1s induce higher levels of IFN-ß production and are more sensitive to the antiviral effects of IFN-ß treatment. qPCR characterization of polysomal mRNA, in the presence or absence of IFN-ß treatment, identified a greater proportion of heavy polysome-associated ISGs including EIF2AK2, OAS1, and MxA in A549 cells infected with rIAVs encoding these CPSF4-binding mutant NS1s, in contrast to rIAV encoding wildtype NS1.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/metabolism , Interferons/genetics , Peptide Chain Initiation, Translational , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Motifs , Cleavage And Polyadenylation Specificity Factor/genetics , Host-Pathogen Interactions , Humans , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , Interferons/metabolism , Protein Binding , Viral Nonstructural Proteins/genetics
20.
J Interferon Cytokine Res ; 37(4): 147-152, 2017 04.
Article in English | MEDLINE | ID: mdl-28387595

ABSTRACT

Aicardi-Goutières syndrome (AGS) is an early-onset, genetic disease characterized by recurrent fever, multifocal lesions of the brain, and systemic autoimmunity. We report on 3 AGS patients, 2 siblings with an RNASEH2A gene mutation and 1 patient with a SAMHD1 gene mutation. Serial analysis of peripheral blood from all 3 AGS patients showed consistently elevated expression of the interferon-stimulated genes (ISGs): ISG15, RSAD2, and IFI27, not observed in unaffected family members. Enumeration of circulating white blood cells and platelets and examination of C-reactive protein showed no significant deviation from the normal range for Patient 2 with the RNASEH2A mutation and Patient 3 with the SAMHD1 mutation, even when Patient 2 had magnetic resonance imaging abnormalities and ongoing febrile episodes. Erythrocyte sedimentation rates fluctuated within the normal range for Patient 2, with some elevation, yet, were in the normal range during the second febrile episode when there were accompanying neurological abnormalities. These preliminary data suggest that ISG expression may be a more specific indicator of disease activity in comparison to standard inflammatory markers.


Subject(s)
Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/metabolism , Gene Expression Regulation , Interferons/metabolism , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , Alleles , Autoimmune Diseases of the Nervous System/blood , Autoimmune Diseases of the Nervous System/diagnosis , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cell Line , Female , Gene Expression Regulation/drug effects , Genotype , Humans , Infant , Interferons/pharmacology , Magnetic Resonance Imaging/methods , Male , Mutation , Nervous System Malformations/blood , Nervous System Malformations/diagnosis , Ribonuclease H/genetics , Severity of Illness Index , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL
...