Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Nat Commun ; 15(1): 6755, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117659

ABSTRACT

Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.


Subject(s)
Glycolysis , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Glycolysis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/deficiency , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Female , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Signal Transduction , Promoter Regions, Genetic/genetics , Myeloid-Lymphoid Leukemia Protein
2.
Eur J Oral Sci ; 132(5): e13010, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39090710

ABSTRACT

The aim of this study was to examine the expression of programmed death-ligand 1 (PD-L1) and of T cell immunoglobulin and mucin domain-containing protein (TIM3) in oral epithelial dysplasia and head and neck squamous cell carcinoma (HNSCC). Mouse HNSCC was induced with 4-nitroquinoline-1 oxide (4NQO). Oral epithelial dysplastic lesions, carcinoma in situ and HNSCC lesions were stained with anti-PD-L1 and TIM3 antibodies. The expression of PD-L1 and TIM3 in tumor cells and immune cells was semiquantitatively measured and compared. In parallel, human dysplasia and HNSCC were stained with anti-PD-L1 and anti-TIM3. The expression pattern of PD-L1+ and TIM3+ cells was further compared. In human and mouse samples both PD-L1 and TIM3 were found to be expressed in neoplastic and immune cells in HNSCC, but not in dysplasia. There was no significant difference in PD-L1 and TIM3 expression between metastatic and nonmetastatic HNSCC. We conclude that the 4NQO-induced mouse HNSCC model may be an excellent preclinical model for immune checkpoint therapy.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , Hepatitis A Virus Cellular Receptor 2 , Squamous Cell Carcinoma of Head and Neck , Animals , Hepatitis A Virus Cellular Receptor 2/metabolism , B7-H1 Antigen/metabolism , Mice , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , 4-Nitroquinoline-1-oxide , Female
3.
Periodontol 2000 ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38073011

ABSTRACT

The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.

5.
Stem Cells ; 40(9): 818-830, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35728620

ABSTRACT

Nerve growth factor (NGF) is the best-characterized neurotrophin and is primarily recognized for its key role in the embryonic development of the nervous system and neuronal cell survival/differentiation. Recently, unexpected actions of NGF in bone regeneration have emerged as NGF is able to enhance the osteogenic differentiation of mesenchymal stem cells. However, little is known regarding how NGF signaling regulates osteogenic differentiation through epigenetic mechanisms. In this study, using human dental mesenchymal stem cells (DMSCs), we demonstrated that NGF mediates osteogenic differentiation through p75NTR, a low-affinity NGF receptor. P75NTR-mediated NGF signaling activates the JNK cascade and the expression of KDM4B, an activating histone demethylase, by removing repressive H3K9me3 epigenetic marks. Mechanistically, NGF-activated c-Jun binds to the KDM4B promoter region and directly upregulates KDM4B expression. Subsequently, KDM4B directly and epigenetically activates DLX5, a master osteogenic gene, by demethylating H3K9me3 marks. Furthermore, we revealed that KDM4B and c-Jun from the JNK signaling pathway work in concert to regulate NGF-mediated osteogenic differentiation through simultaneous recruitment to the promoter region of DLX5. We identified KDM4B as a key epigenetic regulator during the NGF-mediated osteogenesis both in vitro and in vivo using the calvarial defect regeneration mouse model. In conclusion, our study thoroughly elucidated the molecular and epigenetic mechanisms during NGF-mediated osteogenesis.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Cell Differentiation/genetics , Epigenesis, Genetic , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Osteogenesis/genetics , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism
6.
Int J Oral Sci ; 14(1): 24, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35525910

ABSTRACT

Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.


Subject(s)
Aging , Facial Bones , Jumonji Domain-Containing Histone Demethylases , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Cell Differentiation , Facial Bones/cytology , Facial Bones/physiology , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Mesenchymal Stem Cells/cytology
7.
Materials (Basel) ; 15(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591588

ABSTRACT

Ultra-high-strength quenching and partitioning (Q&P) steels have achieved remarkable lightweight effect in automotive manufacture due to the excellent mechanical performances. However, the problem of sheared-edge cracking greatly limits their application. In this work, the damage generated in the shearing process of QP980 steel is experimentally investigated via microstructure characterization and micro-/macromechanical property evaluation. Moreover, the shearing deformation is simulated with six widely used damage models. The experimental results reveal that microvoids, microcracks, and work-hardening behavior are the main damage factors affecting the formability of sheared edges. Microvoids mainly formed at phase interfaces have a small size (≤5 µm), while microvoids generated from inclusions with a small number have a large size (>5 µm). As deformation continuously grows, microvoids distributed around the sheared surface are split into microcracks, which act as crack initiators in the subsequent forming step. Additionally, the highest microhardness in the fracture zone further enhances the susceptibility of edge cracking. Furthermore, the optimum damage model for QP980 steel was determined by developing user-defined subroutine VUSDFLD in Abaqus, which can be used in the prediction of fracture behavior of QP980 steel to reduce the risk of edge cracking.

8.
Materials (Basel) ; 15(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35629600

ABSTRACT

The precipitation behavior of κ-carbide and its effects on mechanical properties in Fe-30Mn-xAl-1C (x = 7-11%) steels under water quenching and furnace cooling are studied in the present paper. TEM, XRD, EPMA were employed to characterize the microstructure, and tensile test and the Charpy impact test were used to evaluate mechanical properties. The results show that the density decreases by 0.1 g/cm3 for every 1 wt.% of Al addition. The excellent mechanical properties of tensile strength of 880 MPa and impact absorption energy of 120-220 J at -40 °C with V notch were obtained, with both solid solution and precipitation strengthening results in the yield strength increasing by about 57.5 MPa with per 1% Al addition in water-quenched samples. The increasing of yield strength of furnace-cooled samples comes from the relative strengthening of κ-carbides, and the strengthening potential reaches 107-467 MPa. The lower the cooling rate, the easier it is to promote the precipitation of κ-carbides and the formation of ferrite. The partitioning of C, Mn, Al determines the formation of κ-carbides at a given Al addition, and element partition makes the κ-carbides sufficiently easy to precipitate at a low cooling rate. The precipitation of κ-carbides improves strength and does not significantly reduce the elongation, but significantly reduces the impact absorption energy when Al addition ≥ 8%.

9.
Periodontol 2000 ; 89(1): 99-113, 2022 06.
Article in English | MEDLINE | ID: mdl-35244945

ABSTRACT

Periodontitis and osteoporosis are prevalent inflammation-associated skeletal disorders that pose significant public health challenges to our aging population. Both periodontitis and osteoporosis are bone disorders closely associated with inflammation and aging. There has been consistent intrigue on whether a systemic skeletal disease such as osteoporosis will amplify the alveolar bone loss in periodontitis. A survey of the literature published in the past 25 years indicates that systemic low bone mineral density (BMD) is associated with alveolar bone loss, while recent evidence also suggests a correlation between clinical attachment loss and other parameters of periodontitis. Inflammation and its influence on bone remodeling play critical roles in the pathogenesis of both osteoporosis and periodontitis and could serve as the central mechanistic link between these disorders. Enhanced cytokine production and elevated inflammatory response exacerbate osteoclastic bone resorption while inhibiting osteoblastic bone formation, resulting in a net bone loss. With aging, accumulation of oxidative stress and cellular senescence drive the progression of osteoporosis and exacerbation of periodontitis. Vitamin D deficiency and smoking are shared risk factors and may mediate the connection between osteoporosis and periodontitis, through increasing oxidative stress and impairing host response to inflammation. With the connection between systemic and localized bone loss in mind, routine dental exams and intraoral radiographs may serve as a low-cost screening tool for low systemic BMD and increased fracture risk. Conversely, patients with fracture risk beyond the intervention threshold are at greater risk for developing severe periodontitis and undergo tooth loss. Various Food and Drug Administration-approved therapies for osteoporosis have shown promising results for treating periodontitis. Understanding the molecular mechanisms underlying their connection sheds light on potential therapeutic strategies that may facilitate co-management of systemic and localized bone loss.


Subject(s)
Alveolar Bone Loss , Osteoporosis, Postmenopausal , Osteoporosis , Periodontal Diseases , Periodontitis , Aged , Alveolar Bone Loss/complications , Bone Density/physiology , Female , Humans , Inflammation/complications , Osteoporosis/complications , Osteoporosis/drug therapy , Osteoporosis, Postmenopausal/complications , Osteoporosis, Postmenopausal/drug therapy , Periodontal Diseases/complications , Periodontal Diseases/therapy , Periodontitis/complications , Periodontitis/therapy
10.
Bone Res ; 10(1): 3, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34992221

ABSTRACT

Osteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic treatment of postmenopausal osteoporosis, induces osteogenesis by activating the estrogen receptor signaling pathway and upregulating the expression of osteogenic genes, such as bone morphogenetic proteins (BMPs). The epigenetic regulation of estrogen-mediated osteogenesis, however, is still unclear. In this report, we found that estrogen significantly induced the expression of lysine-specific demethylase 6B (KDM6B) and that KDM6B depletion by shRNAs led to a significant reduction in the osteogenic potential of DMSCs. Mechanistically, upon estrogen stimulation, estrogen receptor-α (ERα) was recruited to the KDM6B promoter, directly enhancing KDM6B expression. Subsequently, KDM6B was recruited to the BMP2 and HOXC6 promoters, resulting in the removal of H3K27me3 marks and activating the transcription of BMP2 and HOXC6, the master genes of osteogenic differentiation. Furthermore, we found that estrogen enhanced DMSC osteogenesis during calvarial bone regeneration and that estrogen's pro-osteogenic effect was dependent on KDM6B in vivo. Taken together, our results demonstrate the vital role of the ERα/KDM6B regulatory axis in the epigenetic regulation of the estrogen-dependent osteogenic response.

12.
Int J Oral Sci ; 13(1): 36, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782601

ABSTRACT

RNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.


Subject(s)
Neoplasms , Humans , Precision Medicine , Sequence Analysis, RNA , Exome Sequencing
13.
Materials (Basel) ; 14(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34772086

ABSTRACT

The thermal processing parameters is very important to the hot rolling and forging process for producing grain refinement in lightweight high-manganese and aluminum steels. In this work, the high temperature deformation behaviors of a low-density steel of Fe30Mn11Al1C alloyed with 0.1Nb and 0.1V were studied by isothermal hot compression tests at temperatures of 850-1150 °C and strain rates between 0.01 s-1 and 10 s-1. It was found that the flow stress constitutive model could be effectively established by the Arrhenius based hyperbolic sine equation with an activation energy of about 389.1 kJ/mol. The thermal processing maps were developed based on the dynamic material model at different strains. It's shown that the safe region for high temperatures in a very broad range of both deformation temperature and deformation strain and only a small unstable high deformation region, located at low temperatures lower than 950 °C. The deformation microstructures were found to be fully recrystallized microstructure in the safe deformation region and the grain size decreases along with decreasing temperature and increasing strain rate. Whereas the deformation microstructures is composed by grain refinement-recrystallized grains and a small fraction of non-recrystallized microstructure in the unstable deformation region, indicating that the deformation behaviors controlled by continuous dynamic recrystallization. The Hall Petch relationship between microhardness and the grain size of the high temperature deformed materials indicates that high strength low-density steel could be developed by a relative low temperature deformation and high strain rate.

14.
Int J Oral Sci ; 13(1): 24, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341329

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC), an aggressive malignancy, is characterized by high morbidity and low survival rates with limited therapeutic options outside of regional surgery, conventional cytotoxic chemotherapy, and irradiation. Increasing studies have supported the synergistic role of the tumor microenvironment (TME) in cancer advancement. The immune system, in particular, plays a key role in surveillance against the initiation, development, and progression of HNSCC. The understanding of how neoplastic cells evolve and evade the immune system whether through self-immunogenicity manipulation, or expression of immunosuppressive mediators, provides the foundation for the development of advanced therapies. Furthermore, the crosstalk between cancer cells and the host immune system have a detrimental effect on the TME promoting angiogenesis, proliferation, and metastasis. This review provides a recent insight into the role of the key inflammatory cells infiltrating the TME, with a focus on reviewing immunological principles related to HNSCC, as cancer immunosurveillance and immune escape, including a brief overview of current immunotherapeutic strategies and ongoing clinical trials.


Subject(s)
Head and Neck Neoplasms , Tumor Microenvironment , Head and Neck Neoplasms/therapy , Humans , Immune Evasion , Squamous Cell Carcinoma of Head and Neck
15.
Adv Sci (Weinh) ; 8(13): 2003376, 2021 07.
Article in English | MEDLINE | ID: mdl-34258151

ABSTRACT

Cancer stemness and immune evasion are closely associated, and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. Here, it is reported that elevated circular RNA FAT1 (circFAT1) in squamous cell carcinoma (SCC) unifies and regulates the positive association between cancer stemness and immune evasion by promoting STAT3 activation. circFAT1 knockdown (KD) reduces tumorsphere formation of SCC cells in vitro and tumor growth in vivo. Bioinformatic analysis reveals that circFAT1 KD impairs the cancer stemness signature and activates tumor cell-intrinsic immunity. Mechanistically, circFAT1 binding to STAT3 in the cytoplasm prevents STAT3 dephosphorylation by SHP1 and promotes STAT3 activation, resulting in inhibition of STAT1-mediated transcription. Moreover, circFAT1 KD significantly enhances PD1 blockade immunotherapy by promoting CD8+ cell infiltration into tumor microenvironment. Taken together, the results demonstrate that circFAT1 is an important regulator of cancer stemness and antitumor immunity.


Subject(s)
Cadherins/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , STAT3 Transcription Factor/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Animals , Cadherins/immunology , Cadherins/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Head and Neck Neoplasms/metabolism , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/immunology , RNA, Circular/metabolism , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
16.
ACS Appl Mater Interfaces ; 13(30): 35342-35355, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34297530

ABSTRACT

Growth-factor-free bone regeneration remains a challenge in craniofacial engineering. Here, we engineered an osteogenic niche composed of a commercially modified alginate hydrogel and whitlockite microparticles (WHMPs), which impart tunable physicochemical properties that can direct osteogenesis of human gingival mesenchymal stem cells (GMSCs). Our in vitro studies demonstrate that WHMPs induce osteogenesis of GMSCs more effectively than previously demonstrated hydroxyapatite microparticles (HApMPs). Alginate-WHMP hydrogels showed higher elasticity without any adverse effects on the viability of the encapsulated GMSCs. Moreover, the alginate-WHMP hydrogels upregulate the mitogen-activated protein kinase (MAPK) pathway, which in turn orchestrates several osteogenic markers, such as RUNX2 and OCN, in the encapsulated GMSCs. Concurrent coculture studies with human osteoclasts demonstrate that GMSCs encapsulated in alginate-WHMP hydrogels downregulate osteoclastic activity, potentially due to release of Mg2+ ions from the WHMPs along with secretion of osteoprotegerin from the GMSCs. In vivo studies demonstrated that the GMSCs encapsulated in our osteogenic niche were able to promote bone repair in calvarial defects in murine models. Altogether, our results confirmed the development of a promising treatment modality for craniofacial bone regeneration based on an injectable growth-factor-free hydrogel delivery system.


Subject(s)
Bone Regeneration/drug effects , Calcium Phosphates/therapeutic use , Hydrogels/therapeutic use , Skull/drug effects , Alginates/therapeutic use , Animals , Cell Differentiation/drug effects , Cells, Immobilized , Gingiva/cytology , Humans , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley , Tissue Engineering/methods
17.
Nat Commun ; 12(1): 3974, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172737

ABSTRACT

Cancer stem cells (CSCs) play a critical role in invasive growth and metastasis of human head and neck squamous cell carcinoma (HNSCC). Although significant progress has been made in understanding the self-renewal and pro-tumorigenic potentials of CSCs, a key challenge remains on how to eliminate CSCs and halt metastasis effectively. Here we show that super-enhancers (SEs) play a critical role in the transcription of cancer stemness genes as well as pro-metastatic genes, thereby controlling their tumorigenic potential and metastasis. Mechanistically, we find that bromodomain-containing protein 4 (BRD4) recruits Mediators and NF-κB p65 to form SEs at cancer stemness genes such as TP63, MET and FOSL1, in addition to oncogenic transcripts. In vivo lineage tracing reveals that disrupting SEs by BET inhibitors potently inhibited CSC self-renewal and eliminated CSCs in addition to elimination of proliferating non-stem tumor cells in a mouse model of HNSCC. Moreover, disrupting SEs also inhibits the invasive growth and lymph node metastasis of human CSCs isolated from human HNSCC. Taken together, our results suggest that targeting SEs may serve as an effective therapy for HNSCC by eliminating CSCs.


Subject(s)
Enhancer Elements, Genetic , Head and Neck Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Lymphatic Metastasis/drug therapy , Lymphatic Metastasis/prevention & control , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , Mice, Inbred C57BL , Mice, SCID , NF-kappa B/genetics , Neoplastic Stem Cells/pathology , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triazoles/pharmacology , Xenograft Model Antitumor Assays
18.
STAR Protoc ; 2(2): 100484, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33982017

ABSTRACT

BMI1-expressing cancer stem cells (CSCs) play a key role in the development, progression, therapy resistance, recurrence, and metastasis of head and neck squamous cell carcinoma (HNSCC). Here, we present a chemically-induced HNSCC mouse model, genetically and pathologically similar to human HNSCC. This protocol describes how to use genetic lineage tracing based on the Cre-loxP recombination strategy, which allows us to study the regulation and targeting of BMI1+ CSCs in primary tumors and lymph node metastases. For complete details on the use and execution of this protocol, please refer to Chen et al. (2017) and Jia et al. (2020).


Subject(s)
Head and Neck Neoplasms , Neoplasms, Experimental , Neoplastic Stem Cells , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins , Squamous Cell Carcinoma of Head and Neck , Animals , Cell Lineage/genetics , Cells, Cultured , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Immunohistochemistry , Male , Mice , Neoplastic Stem Cells/classification , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
19.
Cell Stem Cell ; 28(9): 1597-1613.e7, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33945793

ABSTRACT

Immunosurveillance is a critical mechanism guarding against tumor development and progression. Checkpoint inhibitors have shown significant success in cancer treatment, but expression of key factors such as PD-L1 in putative cancer stem cell (CSC) populations in squamous cell carcinoma has been inconclusive, suggesting that CSCs may have developed other mechanisms to escape immune surveillance. Here we show that CSCs upregulate the immune checkpoint molecule CD276 (B7-H3) to evade host immune responses. CD276 is highly expressed by CSCs in mouse and human head and neck squamous cell carcinoma (HNSCC) and can be used to prospectively isolate tumorigenic CSCs. Anti-CD276 antibodies eliminate CSCs in a CD8+ T cell-dependent manner, inhibiting tumor growth and lymph node metastases in a mouse HNSCC model. Single-cell RNA sequencing (RNA-seq) showed that CD276 blockade remodels SCC heterogeneity and reduces epithelial-mesenchymal transition. These results show that CSCs utilize CD276 for immune escape and suggest that targeting CD276 may reduce CSCs in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Animals , Cell Line, Tumor , Mice , Neoplastic Stem Cells , Squamous Cell Carcinoma of Head and Neck
SELECTION OF CITATIONS
SEARCH DETAIL