Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.638
1.
Sci Rep ; 14(1): 12592, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824196

The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.


Gene Expression Regulation, Plant , Polysaccharides , Populus , Promoter Regions, Genetic , Transcription Factors , Populus/genetics , Populus/metabolism , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Cell Wall/metabolism , Cell Wall/genetics
2.
ACS Omega ; 9(20): 22386-22397, 2024 May 21.
Article En | MEDLINE | ID: mdl-38799314

Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.

3.
Bioorg Chem ; 149: 107477, 2024 May 19.
Article En | MEDLINE | ID: mdl-38820938

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis targeting chimeras (PROTACs) emerge as a promising approach to overcome the limitations of FLT3 inhibitors, while the development of orally bioavailable FLT3-PROTACs faces great challenges. Here, we report the rational design and evaluation of a series of Gilteritinib-based FLT3-PROTACs. Among them, B3-2 exhibited the strongest antiproliferative activity against FLT3-ITD mutant AML cells, and significantly induced FLT3-ITD protein degradation. Mechanistic investigations demonstrated that B3-2 induced FLT3-ITD degradation in a ubiquitin-proteasome-dependent manner. More importantly, B3-2 exhibited an oral bioavailability of 5.65%, and oral administration of B3-2 showed good antitumor activity in MV-4-11 xenograft models. Furthermore, B3-2 showed strong antiproliferative activity against FLT3 resistant mutations, highlighting its potential in overcoming drug resistance.

4.
Waste Manag ; 183: 174-183, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38759275

Solid-phase residues from pyrolysis of oily wastes (OS) are widely used due to their rich pore structure and strong adsorption capacity. In this study, pyrolysis residues (OS-P) were obtained from the pyrolysis treatment of four typical OS in Karamay, Xinjiang. The results indicate that the crystalline substances in OS-P mainly were SiO2, BaSO4, and graphite. The heavy metals of OS-P were higher than that of OS in the following order: Zn > Cu > Ni > Cr > Pb > Cd. The results of the improvement of Community Bureau of Reference (BCR) sequential extraction showed that the proportion of Cu, Ni and Cr in OS1-P in the residual fraction was higher than that of the other three OS. The residual fraction of Cu, Ni, and Cr in OS1-P increased from 16.0 %, 30.0 %, and 11.0 % to 66.1 %, 81.9 %, and 89.2 %, respectively. After pyrolysis treatment, the leaching concentration of heavy metals in the residue was reduced. Referring to the requirements for heavy metal control limits (GB 4284-2018), all heavy metals in OS-P showed low risk. Their potential ecological risk indices were 4.11, 3.13, 4.87 and 5.35, respectively, indicating that the potential ecological hazards of heavy metals from OS-P were slight. There was no significant effect on the histopathological changes of kidney, lung, liver, ovary and testis of mice, showing that the rational use of OS-P in production will not produce toxic effects on target animals. Based on risk assessment and safety evaluation, the application of OS-P is controllable, safe and reliable for resource utilization.


Metals, Heavy , Pyrolysis , Metals, Heavy/analysis , Risk Assessment/methods , Animals , Mice , China , Refuse Disposal/methods
5.
Acta Biochim Pol ; 71: 12461, 2024.
Article En | MEDLINE | ID: mdl-38721305

Objective: To analyze the clinical characteristics of primary Sjögren's syndrome (pSS) combined with interstitial lung disease (ILD), so as to provide a theoretical basis for the early diagnosis, treatment and prevention of PSS-ILD. Methods: From October 2017 to January 2022, patients with pSS who were admitted to the Department of Rheumatology at Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine were included in this retrospective study. Patients were divided into the pSS-ILD (102 cases) and pSS-non-ILD groups (154 cases) based on the presence or absence of ILD on high-resolution computed tomography (HRCT). Demographics information, clinical symptoms, laboratory indicators and HRCT features were compared, and the logistic regression analysis was utilized to identify the risk factors. Results: A total of 256 patients were included. Patients with pSS-ILD were more often female, and their age and disease duration were significantly higher than those in the pSS-non-ILD group (p < 0.05). The HRCT imaging classification included ground glass-like shadow (78.4%) and patchy solid shadow (17.6%), and Non-specific interstitial pneumonitis (NSIP) (72.5%) was the predominant typology. Regarding the laboratory indexes, the positive rates of erythrocyte sedimentation rate, C-reactive protein, white blood cell count, neutrophil/lymphocyte ratio, triglycerides, total cholesterol, and anti-SS-A52 antibodies were significantly higher in the pSS-ILD patients than in the pSS-non-ILD group, while the positive rates of anti-synaptic antibodies were lower than in the pSS-non-ILD group, and the differences between two groups were statistically significant (p < 0.05). Logistic regression showed that age >60 years, longer duration of disease, higher triglycerides, and cholesterol were risk factors for pSS-ILD patients. Conclusion: The clinical features of pSS-ILD patients were xerophthalmia, cough and shortness of breath, and HRCT can help to diagnose the disease at an early stage. Age over 60 years, chronic course of disease, and elevated lipid levels are risk factors for ILD in pSS patients, and the relationship between autoimmune antibody levels and the occurrence of ILD needs to be further confirmed in follow-up studies with large sample sizes. These findings have the potential to provide useful information for early diagnosis, treatment, and prevention of the development of pSS-ILD.


Lung Diseases, Interstitial , Sjogren's Syndrome , Tomography, X-Ray Computed , Humans , Sjogren's Syndrome/complications , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/complications , Female , Retrospective Studies , Male , Middle Aged , Risk Factors , Adult , Aged , China/epidemiology
6.
Foods ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731655

Litopenaeus vannamei protein (LVP) is a high-quality protein. However, its functional properties do not fully meet the needs of food processing. In this study, LVP-xylose conjugates were prepared by conventional wet heat method (GLVP) and ball-milling-assisted wet heat method (GBLVP), respectively. The changes in structure and functional properties of the glycosylated LVP were explored. The findings revealed that ball-milling pretreatment increased the grafting degree to 35.21%. GBLVP had a sparser surface structure and lower particle size than GLVP. FTIR spectra showed that xylose was grafted onto LVP successfully and GBLVP had the lowest α-helix content. Compared with GLVP, GBLVP had a decrease in intrinsic fluorescence intensity and surface hydrophobicity, and an increase in UV absorption intensity. Moreover, GBLVP had higher foaming capacity, solubility and water-holding capacity, and lower allergenicity than GLVP. However, ball-milling pretreatment had a negative impact on the vitro digestibility and oil-holding capacity of GBLVP. In conclusion, ball-milling-assisted treatment of glycosylation could effectively improve the functional properties of LVP, benefiting the broader application of LVP in the food industry.

7.
Front Genet ; 15: 1394636, 2024.
Article En | MEDLINE | ID: mdl-38737126

Introduction: Xinjiang Brown cattle constitute the largest breed of cattle in Xinjiang. Therefore, it is crucial to establish a genomic evaluation system, especially for those with low levels of breed improvement. Methods: This study aimed to establish a cross breed joint reference population by analyzing the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese Holstein cattle (Illumina GeneSeek GGP bovine 150 K chip). The Bayes method single-step genome-wide best linear unbiased prediction was used to conduct a genomic evaluation of the joint reference population for the milk traits of Xinjiang Brown cattle. The reference population of Chinese Holstein cattle was randomly divided into groups to construct the joint reference population. By comparing the prediction accuracy, estimation bias, and inflation coefficient of the validation population, the optimal number of joint reference populations was determined. Results and Discussion: The results indicated a distinct genetic structure difference between the two breeds of adult cows, and both breeds should be considered when constructing multi-breed joint reference and validation populations. The reliability range of genome prediction of milk traits in the joint reference population was 0.142-0.465. Initially, it was determined that the inclusion of 600 and 900 Chinese Holstein cattle in the joint reference population positively impacted the genomic prediction of Xinjiang Brown cattle to certain extent. It was feasible to incorporate the Chinese Holstein into Xinjiang Brown cattle population to form a joint reference population for multi-breed genomic evaluation. However, for different Xinjiang Brown cattle populations, a fixed number of Chinese Holstein cattle cannot be directly added during multi-breed genomic selection. Pre-evaluation analysis based on the genetic structure, kinship, and other factors of the current population is required to ensure the authenticity and reliability of genomic predictions and improve estimation accuracy.

8.
China CDC Wkly ; 6(17): 363-367, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38737821

What is already known about this topic?: China's "1-3-7" approach outlines specific targets to guide and monitor the processes of case reporting, investigation, and response. However, few studies have examined the time intervals preceding the initial step, and the timeline from the arrival of imported malaria cases in China to their diagnosis has been largely overlooked. What is added by this report?: The study demonstrated that the median duration from arrival in China to the onset of symptoms for P. ovale was 78 days, with 71.59% of imported cases manifesting symptoms after more than one month. For P. vivax, the median interval was 42 days, with 55.91% exceeding one month. Additionally, the median time from symptom onset to malaria treatment in China between 2014 and 2021 was 2 days, with an interquartile range (IQR) of 1-4 days. What are the implications for public health practice?: This study represents the initial effort to delineate the chronology of imported malaria cases, from their arrival in China to their subsequent treatment. The results underscore the importance of providing malaria health education to populations arriving from overseas. Furthermore, enhancing physician training is crucial for improving the diagnosis of malaria.

9.
ACS Appl Mater Interfaces ; 16(20): 26121-26129, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728577

The design of aqueous zinc-ion batteries (ZIBs) that have high specific capacity and long-term stability is essential for future large-scale energy storage systems. Cathode materials with extended π-conjugation and abundant active sites are desirable to enhance the charge storage performance and the cycling stability of the aqueous ZIB. Based on this concept, 6,9-dihydropyrazino[2,3-g]quinoxaline-2,3,7,8(1H,4H)-tetrone was chosen as the monomer to be electropolymerized onto carbon cloth (PDHPQ-Tetrone/CC). When used as the cathode material for aqueous ZIBs, an exceptional cycling life (>20,000 cycles) at a current density of 10 A g-1 was achieved, with the specific capacity maintained at 82.8% and with the Coulombic efficiency at around 100% throughout cycling. At the charge-discharge current density of 0.1 A g-1, the ZIB with PDHPQ-Tetrone/CC achieved a high specific capacity of 248 mAh g-1. Kinetic analyses showed that both surface-capacitive-controlled processes and semi-infinite diffusion-controlled processes contribute to the stored charge. The charge storage mechanism was investigated with ex situ characterizations and involves the redox processes of carbonyl/hydroxyl and amino/imino groups coupled with insertion and extraction of both Zn2+ and H+.

10.
Adv Sci (Weinh) ; : e2310017, 2024 May 15.
Article En | MEDLINE | ID: mdl-38747256

Laser-induced graphene (LIG) technology has provided a new manufacturing strategy for the rapid and scalable assembling of triboelectric nanogenerators (TENG). However, current LIG-based TENG commonly rely on polymer films, e.g., polyimide (PI) as both friction material and carbon precursor of electrodes, which limit the structural diversity and performance escalation due to its incapability of folding and creasing. Using specialized PI paper composed of randomly distributed PI fibers to substantially enhance its foldability, this work creates a new type of TENG, which are structurally foldable and stackable, and performance tailorable. First, by systematically investigating the laser power-regulated performance of single-unit TENG, the open-circuit voltage can be effectively improved. By further exploiting the folding process, multiple TENG units can be assembled together to form multi-layered structures to continuously expand the open-circuit voltage from 5.3 to 34.4 V cm-2, as the increase of friction units from 1 to 16. Last, by fully utilizing the unique structure and performance, representative energy-harvesting and smart-sensing applications are demonstrated, including a smart shoe to recognize running motions and power LEDs, a smart leaf to power a thermometer by wind, a matrix sensor to recognize writing trajectories, as well as a smart glove to recognize different objects.

11.
Nano Lett ; 24(19): 5808-5815, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710049

In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.


Antigen-Presenting Cells , Cell Communication , DNA , DNA/chemistry , Humans , Antigen-Presenting Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Lymphocyte Activation , Neoplasms/pathology , Neoplasms/genetics
12.
Medicine (Baltimore) ; 103(19): e38113, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728495

To explore the potential mechanism in Cuscuta sinensis on diarrhea-type irritable bowel syndrome using network pharmacology and molecular docking techniques. First, the active components and related targets of Cuscuta were found setting oral utilization >30% and drug-like properties greater than or equal to 0.18 as filter information from TCMSP database. The targets of diarrheal irritable bowel syndrome were compiled by searching DrugBank, GeneCards, OMIM, PharmGkb, and TTD databases. The intersections of drugs and targets related to the disease were taken for gene ontology enrichment and Kyoto encyclopedia of genes and genomes enrichment analyses, to elucidate the potential molecular mechanisms and pathway information of Cuscuta sinensis for the treatment of diarrheal irritable bowel syndrome. The protein-protein interaction network was constructed by using the STRING database and visualized with Cytoscape_v3.10.0 software to find the protein-protein interaction network core At last, molecular docking was performed to validate the combination of active compounds with the core target. The target information of Cuscuta and diarrhea-type irritable bowel syndrome was compiled, which can be resulted in 11 active compounds such as quercetin, kaempferol, isorhamnetin, ß-sitosterol, and another 17 core targets such as TP53, IL6, AKT1, IL1B, TNF, EGFR, etc, whose Kyoto encyclopedia of genes and genomes was enriched in the pathways of lipids and atherosclerosis, chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, and fluid shear stress and atherosclerosis, etc. Docking demonstrated that the core targets and the active compounds were able to be better combined. Cuscuta chinensis may exert preventive effects on diarrhea-type irritable bowel syndrome by reducing intestinal inflammation, protecting intestinal mucosa, and playing an important role in antioxidant response through multi-targets and multi-pathways.


Cuscuta , Diarrhea , Irritable Bowel Syndrome , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Irritable Bowel Syndrome/drug therapy , Humans , Diarrhea/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
13.
Biomol Biomed ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38733633

Patients older than the expected age of the local population generally have limited life expectancy. The optimal treatment approach for very elderly patients with head and neck cancer remains uncertain. This study retrospectively analyzed patients over 78 years old, the expected age in 2019 for Chinese individuals, who underwent treatment for head and neck cancer at a tertiary cancer center in China. The study compared the overall survival rates among different treatment groups. The findings revealed that among patients eligible for surgery, radical resection yielded better outcomes compared to radiotherapy-based treatments, with a hazard ratio of 0.362 (95% CI 0.160-0.819, P = 0.015). Among patients who received radiotherapy, those who received a total dose exceeding 60 Gy had a significantly longer survival compared to those who received palliative doses, with median survival time of 31 months versus 14 months (P = 0.003). Among 78 patients who underwent conventional fractionated radiotherapy (CFRT), 15 patients (19.23%) experienced unscheduled treatment breaks with a median duration of 12 days. However, these treatment breaks did not appear to impact survival (P > 0.1). The study also suggested that altered fractionated radiotherapy, including hypofractionated radiotherapy (hypo-RT), could be a viable alternative to CFRT, offering similar survival outcomes with reduced treatment duration. In conclusion, eligible patients should be treated with curative intent, even if they are older than the expected age of the local population. When radiotherapy is indicated, altered fractionation, particularly hypo-RT, may be a favorable option to consider.

14.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740744

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Forkhead Transcription Factors , Ovarian Neoplasms , Receptor Protein-Tyrosine Kinases , Wnt Signaling Pathway , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Cell Line, Tumor , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Cell Proliferation
15.
Emerg Microbes Infect ; 13(1): 2343907, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738553

Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.


Cattle Diseases , Orthomyxoviridae Infections , Phylogeny , Thogotovirus , Animals , China/epidemiology , Cattle , Thogotovirus/genetics , Thogotovirus/classification , Thogotovirus/isolation & purification , Thogotovirus/immunology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/transmission , Seroepidemiologic Studies , Swine , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/transmission , Goats , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Humans , Deltainfluenzavirus
16.
Front Immunol ; 15: 1371584, 2024.
Article En | MEDLINE | ID: mdl-38694509

Backgrounds: Extracellular matrix (ECM) is an important component of tumor microenvironment, and its abnormal expression promotes tumor formation, progression and metastasis. Methods: Weighted gene co-expression network analysis (WGCNA) was used to identify ECM-related hub genes based on The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) data. COAD clinical samples were used to verify the expression of potential biomarkers in tumor tissues, and siRNA was used to explore the role of potential biomarkers in cell proliferation and epithelial-mesenchymal transition (EMT). Results: Three potential biomarkers (LEP, NGF and PCOLCE2) related to prognosis of COAD patients were identified and used to construct ERGPI. Immunohistochemical analysis of clinical samples showed that the three potential biomarkers were highly expressed in tumor tissues of COAD patients. Knockdown of LEP, NGF or PCOLCE2 inhibited COAD cell proliferation and EMT. Dictamnine inhibited tumor cell growth by binding to these three potential biomarkers based on molecular docking and transplanted tumor model. Conclusion: The three biomarkers can provide new ideas for the diagnosis and targeted therapy of COAD patients.


Adenocarcinoma , Biomarkers, Tumor , Colonic Neoplasms , Computational Biology , Epithelial-Mesenchymal Transition , Extracellular Matrix , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Computational Biology/methods , Extracellular Matrix/metabolism , Animals , Epithelial-Mesenchymal Transition/genetics , Mice , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Tumor Microenvironment , Molecular Docking Simulation , Gene Expression Profiling , Male , Gene Regulatory Networks
17.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703241

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


ARNTL Transcription Factors , Drug Resistance, Neoplasm , Ferroptosis , HMGB1 Protein , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Female , Humans , Male , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Prognosis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
18.
Food Chem X ; 22: 101407, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38711773

Radish (Raphanus sativus L.) undergoes texture changes in their phy-chemical properties during the long-term dry-salting process. In our study, we found that during the 60-day salting period, the hardness and crispness of radish decreased significantly. In further investigation, we observed that the collaborative action of pectin methylesterase (PME) and polygalacturonase (PG) significantly decreased the total pectin, alkali-soluble pectin (ASP), and chelator-soluble pectin (CSP) content, while increasing the water-soluble pectin (WSP) content. Furthermore, the elevated activities of cellulase and hemicellulase directly led to the notable fragmentation of cellulose and hemicellulose. The above reactions jointly induced the depolymerization and degradation of cell wall polysaccharides, resulting in an enlargement of intercellular spaces and shrinkage of the cell wall, which ultimately led to a reduction in the hardness and crispness of the salted radish. This study provided key insights and guidance for better maintaining textural properties during the dry-salting process of radish.

19.
J Am Coll Health ; : 1-16, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713863

OBJECTIVES: To estimate the one-month prevalence of problematic psychological symptoms among Canadian postsecondary students, and to compare the prevalence by student characteristics. PARTICIPANTS: Three samples of students from two postsecondary institutions. METHODS: In a cross-sectional study conducted in 2017, we measured self-reported problems related to symptoms of depression, anxiety, and stress using questions from the functioning module of the WHO Model Disability Survey. We used modified Poisson regression modeling to compute prevalence ratios (95%CI) to compare the prevalence by student characteristics. RESULTS: Our study included 1392 students (participation rate 35%-77%). Across samples, the one-month prevalence of moderate-extreme problems ranged from 50.8%-64.7% for anxiety, 41.2%-60.8% for stress, and 29.4%-43.6% for depression. Such problems were consistently more prevalent among females, poor-quality sleepers, students with food insecurity and those with insufficient social support. CONCLUSIONS: Significant burden of problems related to psychological symptoms exists within the postsecondary student population and varies by student characteristics.

20.
Brain Spine ; 4: 102806, 2024.
Article En | MEDLINE | ID: mdl-38690091

Introduction: The effectiveness of post-surgical rehabilitation following lumbar disc herniation (LDH) surgery is unclear. Research question: To investigate the effectiveness and safety of rehabilitation interventions initiated within three months post-surgery for adults treated surgically for LDH. Material and methods: This systematic review searched seven databases from inception to November 2023. Independent reviewers screened studies, assessed and extracted data, and rated the certainty of the evidence using the GRADE approach. Results: This systematic review retrieved 20,531 citations and included 25 randomized controlled trials. The high certainty evidence suggests that adding Pilates exercise to routine care and cognitive behavioral therapy may improve function immediately post-intervention (1 RCT), and that adding whole-body magnetic therapy to exercise, pharmacological and aquatic therapy may reduce low back pain intensity (1 RCT) immediately post-intervention. Compared to placebo, pregabalin did not reduce low back pain or leg pain intensity (1 RCT) (moderate to high certainty evidence). We found no differences between: 1) behavioral graded activity vs. physiotherapy (1 RCT); 2) exercise and education vs. neck massage or watchful waiting (1 RCT); 3) exercise, education, and in-hospital usual care vs. in-hospital usual care (1 RCT); 4) functional or staged exercise vs. usual post-surgical care including exercise (2 RCTs); and 5) supervised exercise with education vs. education (1 RCT). No studies assessed adverse events. Discussion and conclusion: Evidence on effective and safe post-surgical rehabilitation interventions is sparse. This review identified two interventions with potential short-term benefits (Pilates exercises, whole-body magnetic therapy) but safety is unclear, and one with an iatrogenic effect (pregabalin).

...