Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 310
1.
Article En | MEDLINE | ID: mdl-38826134

Medial arterial calcification (MAC) accompanying chronic kidney disease (CKD) leads to increased vessel wall stiffness, myocardial ischemia, heart failure, and increased cardiovascular morbidity and mortality. Unfortunately, there are currently no drugs available to treat MAC. The natural polyphenol epigallocatechin-3-gallate (EGCG) has been demonstrated to protect against cardiovascular disease; however, whether EGCG supplementation inhibits MAC in CKD remains unclear. In this study, we utilize a CKD-associated MAC model to investigate the effects of EGCG on vascular calcification and elucidate the underlying mechanisms involved. Our findings demonstrate that EGCG treatment significantly reduces calcium phosphate deposition and osteogenic differentiation of VSMCs in vivo and in vitro in a dose-dependent manner. In addition, through RNA sequencing (RNA-seq) analysis, we show a significant activation of the transcription factor JunB both in CKD mouse arteries and in osteoblast-like VSMCs. Notably, EGCG effectively suppresses CKD-associated MAC by inhibiting the activity of JunB. In addition, overexpression of JunB can abolish while knockdown of JunB can enhance the inhibitory effect of EGCG on the osteogenic differentiation of VSMCs. Furthermore, EGCG supplementation inhibits MAC in CKD via modulation of the JunB-dependent Ras/Raf/MEK/ERK signaling pathway. In conclusion, our study highlights the potential therapeutic value of EGCG for managing CKD-associated MAC, as it mitigates this pathological process through targeted inactivation of JunB.

2.
APL Bioeng ; 8(2): 026115, 2024 Jun.
Article En | MEDLINE | ID: mdl-38827498

Silk fibroin (SF), which is extensively utilized in tissue engineering and vascular grafts for enhancing vascular regeneration, has not been thoroughly investigated for its epigenetic effects on endothelial cells (EC). This study employed RNA sequencing analysis to evaluate the activation of histone modification regulatory genes in EC treated with SF. Subsequent investigations revealed elevated H3K9me3 levels in SF-treated EC, as evidenced by immunofluorescence and western blot analysis. The study utilized H2B-eGFP endothelial cells to demonstrate that SF treatment results in the accumulation of H2B-marked chromatin in the nuclear inner cavities of EC. Inhibition of H3K9me3 levels by a histone deacetylase inhibitor TSA decreased cell proliferation. Furthermore, the activation of the MAPK signaling pathway using chromium picolinate decreased the proliferative activity and H3K9me3 level in SF-treated EC. SF also appeared to enhance cell growth and proliferation by modulating the H3K9me3 level and reorganizing chromatin, particularly after oxidative stress induced by H2O2 treatment. In summary, these findings indicate that SF promotes EC proliferation by increasing the H3K9me3 level even under stress conditions.

3.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Article En | MEDLINE | ID: mdl-38725857

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


ErbB Receptors , Extracellular Vesicles , Kruppel-Like Transcription Factors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Stress, Mechanical , Extracellular Vesicles/metabolism , ErbB Receptors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Extracellular Fluid/metabolism , Phenotype , Animals , Atherosclerosis/metabolism , MAP Kinase Signaling System , Signal Transduction
4.
World J Microbiol Biotechnol ; 40(7): 198, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727952

Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1ß, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.


Apolipoproteins E , Atherosclerosis , Plaque, Atherosclerotic , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Mice , Atherosclerosis/microbiology , Apolipoproteins E/genetics , Male , Disease Models, Animal , Mice, Knockout , Diet, High-Fat , Lactobacillus plantarum , Cytokines/metabolism , Mice, Inbred C57BL , Inflammation
5.
Chem Sci ; 15(20): 7524-7544, 2024 May 22.
Article En | MEDLINE | ID: mdl-38784734

A right-side-out orientated self-assembly of cell membrane-camouflaged nanotherapeutics is crucial for ensuring their biological functionality inherited from the source cells. In this study, a universal and spontaneous right-side-out coupling-driven ROS-responsive nanotherapeutic approach, based on the intrinsic affinity between phosphatidylserine (PS) on the inner leaflet and PS-targeted peptide modified nanoparticles, has been developed to target foam cells in atherosclerotic plaques. Considering the increased osteopontin (OPN) secretion from foam cells in plaques, a bioengineered cell membrane (OEM) with an overexpression of integrin α9ß1 is integrated with ROS-cleavable prodrugs, OEM-coated ETBNPs (OEM-ETBNPs), to enhance targeted drug delivery and on-demand drug release in the local lesion of atherosclerosis. Both in vitro and in vivo experimental results confirm that OEM-ETBNPs are able to inhibit cellular lipid uptake and simultaneously promote intracellular lipid efflux, regulating the positive cellular phenotypic conversion. This finding offers a versatile platform for the biomedical applications of universal cell membrane camouflaging biomimetic nanotechnology.

6.
J Funct Biomater ; 15(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38786646

Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.

7.
Acta Biomater ; 181: 375-390, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734284

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.


Fluorescent Dyes , Nanoparticles , Plaque, Atherosclerotic , Reactive Oxygen Species , Plaque, Atherosclerotic/diagnostic imaging , Animals , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Fluorescent Dyes/chemistry , Mice , Optical Imaging/methods , Hyaluronic Acid/chemistry , Lipids/chemistry , Humans , RAW 264.7 Cells
8.
Biomed Mater ; 19(3)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38593822

This study utilized the freeze-drying method to create a chitosan (CS) and polyvinyl alcohol (PVA) sponge. To enhance its antibacterial properties, curcumin and nano silver (Cur@Ag) were added for synergistic antibacterial. After adding curcumin and nano silver, the mechanical properties of the composite sponge dressing (CS-PVA-Cur@Ag) were improved. The porosity of the composite sponge dressing was closed to 80%, which was helpful for drug release, and it had good water absorption and water retention rate. The nano silver diameter was 50-80 nm, which was optimal for killing bacteria. Antibacterial tests usedEscherichia coliandStaphylococcus aureusdemonstrated that little nano silver was required to eliminate bacteria. Finally, in the rat full-thickness skin wound model, the composite sponge dressing can promote wound healing in a short time. In summary, CS-PVA-Cur@Ag wound dressing could protect from bacterial infection and accelerate wound healing. Thus, it had high potential application value for wound dressing.


Chitosan , Curcumin , Silver , Rats , Animals , Polyvinyl Alcohol , Anti-Bacterial Agents , Bacteria , Water
9.
Front Cardiovasc Med ; 11: 1337679, 2024.
Article En | MEDLINE | ID: mdl-38638885

Biomechanical forces, including vascular shear stress, cyclic stretching, and extracellular matrix stiffness, which influence mechanosensitive channels in the plasma membrane, determine cell function in atherosclerosis. Being highly associated with the formation of atherosclerotic plaques, endocytosis is the key point in molecule and macromolecule trafficking, which plays an important role in lipid transportation. The process of endocytosis relies on the mobility and tension of the plasma membrane, which is sensitive to biomechanical forces. Several studies have advanced the signal transduction between endocytosis and biomechanics to elaborate the developmental role of atherosclerosis. Meanwhile, increased plaque growth also results in changes in the structure, composition and morphology of the coronary artery that contribute to the alteration of arterial biomechanics. These cross-links of biomechanics and endocytosis in atherosclerotic plaques play an important role in cell function, such as cell phenotype switching, foam cell formation, and lipoprotein transportation. We propose that biomechanical force activates the endocytosis of vascular cells and plays an important role in the development of atherosclerosis.

11.
Microsc Res Tech ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38500314

The magnitude of vascular residual stress, an inherent characteristic exclusive to the vasculature, exhibits a strong correlation with vascular compliance, tensile resistance, vascular rigidity, and vascular remodeling subsequent to vascular transplantation. Vascular residual stress can be quantified by evaluating the magnitude of the opening angle within the vascular ring. For decellularized vessels, the vascular ring's opening angle diminishes, consequently reducing residual stress. The decellularization process induces a laxity in the vascular fiber structure within decellularized vessels. To investigate the interrelation between the magnitude of residual stress and the microstructure as well as mechanical properties of elastin and collagen within blood vessels, this study employed fresh blood vessels, stress-relieved vessels, and sections of decellularized blood vessels. Structural scanning and force map experiments on the surface of the sections were conducted using atomic force microscopy (AFM). The findings revealed well-organized arrangements of elastin and collagen within fresh vessels, wherein the regularity of collagen and elastin exhibited variability as residual stress declined. Furthermore, both stress-relieved and decellularized vessel sections exhibited a reduction in the mean Young's modulus to varying extents in comparison to fresh vessels. The validity of our experimental results was further corroborated through finite element simulations. Hence, residual stress assumes a crucial role in upholding the structural stability of blood vessels, and the intricate association between residual stress and the microstructural and micromechanical properties of blood vessels holds significant implications for comprehending the impact of vascular diseases on vascular structure and advancing the development of biomimetic artificial blood vessels that replicate residual stress. RESEARCH HIGHLIGHTS: In this inquiry, we scrutinized the interconnection amid vascular residual stress and the microscale and nanoscale aspects of vascular structure and mechanical function, employing AFM. We ascertained that residual stress assumes a pivotal role in upholding vascular microstructure and mechanical attributes. The experimental outcomes were subsequently validated through finite element simulation.

12.
Int J Biol Macromol ; 263(Pt 1): 130249, 2024 Apr.
Article En | MEDLINE | ID: mdl-38368994

Persistent over-oxidation, inflammation and bacterial infection are the primary reasons for impaired wound repairing in diabetic patients. Therefore, crucial strategies to promote diabetic wound repairing involve suppressing the inflammatory response, inhibiting bacterial growth and decreasing reactive oxygen species (ROS) within the wound. In this work, we develop a multifunctional nanomedicine (HA@Cur/Cu) designed to facilitate the repairing process of diabetic wound. The findings demonstrated that the synthesized infinite coordination polymers (ICPs) was effective in enhancing the bioavailability of curcumin and improving the controlled drug release at the site of inflammation. Furthermore, in vitro and in vivo evaluation validate the capacity of HA@Cur/Cu to inhibit bacterial growth and remove excess ROS and inflammatory mediators, thereby significantly promoting the healing of diabetic wound in mice. These compelling findings strongly demonstrate the enormous promise of this multifunctional nanomedicine for the treatment of diabetic wound.


Curcumin , Diabetes Mellitus , Humans , Mice , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Wound Healing , Hyaluronic Acid/pharmacology , Nanomedicine , Reactive Oxygen Species/pharmacology , Hydrogels/pharmacology , Inflammation , Anti-Bacterial Agents/pharmacology
13.
Front Immunol ; 15: 1321395, 2024.
Article En | MEDLINE | ID: mdl-38343539

The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.


Atherosclerosis , Cardiovascular Diseases , Gastrointestinal Microbiome , Hypertension , Methylamines , Microbiota , Humans , Cardiovascular Diseases/therapy , Cardiovascular Diseases/etiology , Gastrointestinal Microbiome/physiology , Hypertension/complications , Atherosclerosis/complications
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 1-5, 2024 Jan 20.
Article Zh | MEDLINE | ID: mdl-38322522

Mechanobiology focuses on a series of important physiopathological processes, such as how cells perceive different mechanomechanical stimuli, the process of intracellular mechanotransduction, and how mechanical signals determine the behavior and fate of cells. From the initial stage of embryogenesis, to developmental biology and regenerative medicine, or even through the whole life process, mechanical signaling cascades and cellular mechanical responses in mechanobiology are of great significance in biomedical research. In recent years, research in the field of mechanobiology has undergone remarkable development. Several scientific consortia around the world have been analyzing mechanobiological processes from different perspectives, aiming to gain insights into the regulatory mechanisms by which mechanical factors affect cell fate determination. In this article, we summarized and reviewed the topics that have attracted more research interests in recent years in the field of mechanobiology, for example, arterial blood vessels, stem cell, and ion channel. We also discussed the potential trends that may emerge, such as nuclear deformation, fibrous extracellular matrix, tumor mechanobiology, cellular mechanotransduction, and piezo ion channels. In addition, we put forward new ideas concerning the limitations of mechanism research and the importance of big data analysis and mining in this field, thereby providing objective support and a systematic framework for grasping the hot research topics and exploring new research directions in the field of mechanobiology.


Mechanotransduction, Cellular , Signal Transduction , Mechanotransduction, Cellular/physiology , Ion Channels/metabolism , Extracellular Matrix/metabolism , Biophysics
15.
Bioact Mater ; 35: 306-329, 2024 May.
Article En | MEDLINE | ID: mdl-38362138

Objectives: To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods: The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results: Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion: The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.

16.
Front Psychiatry ; 15: 1295766, 2024.
Article En | MEDLINE | ID: mdl-38404464

Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.

17.
APL Bioeng ; 8(1): 016110, 2024 Mar.
Article En | MEDLINE | ID: mdl-38414635

Long-term ischemia leads to insufficient cerebral microvascular perfusion and dysfunction. Reperfusion restores physiological fluid shear stress (FSS) but leads to serious injury. The mechanism underlying FSS-induced endothelial injury in ischemia-reperfusion injury (IRI) remains poorly understood. In this study, a rat model of middle cerebral artery occlusion was constructed to explore cerebrovascular endothelial function and inflammation in vivo. Additionally, the rat brain microvascular endothelial cells (rBMECs) were exposed to a laminar FSS of 0.5 dyn/cm2 for 6 h and subsequently restored to physiological fluid shear stress level (2 dyn/cm2) for 2 and 12 h, respectively. We found that reperfusion induced endothelial-to-mesenchymal transition (EndMT) in endothelial cells, leading to serious blood-brain barrier dysfunction and endothelial inflammation, accompanied by the nuclear accumulation of Yes-associated protein (YAP). During the later stage of reperfusion, cerebral endothelium was restored to the endothelial phenotype with a distinct change in mesenchymal-to-endothelial transition (MEndT), while YAP was translocated and phosphorylated in the cytoplasm. Knockdown of YAP or inhibition of actin polymerization markedly impaired the EndMT in rBMECs. These findings suggest that ischemia-reperfusion increased intensity of FSS triggered an EndMT process and, thus, led to endothelial inflammation and tissue injury, whereas continuous FSS induced a time-dependent reversal MEndT event contributing to the endothelial repair. This study provides valuable insight for therapeutic strategies targeting IRI.

18.
Biofabrication ; 16(2)2024 02 22.
Article En | MEDLINE | ID: mdl-38350130

This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.


Bioprinting , Fibroins , Skin Diseases , Humans , Skin , Cluster Analysis
19.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article En | MEDLINE | ID: mdl-38256090

The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine ß-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 µg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 µg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 µg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 µg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.


beta-Defensins , Swine , Animals , Mice , beta-Defensins/genetics , Lipopolysaccharides/pharmacology , Inflammation/genetics , Signal Transduction , Anti-Inflammatory Agents
20.
Genes Dis ; 11(3): 101046, 2024 May.
Article En | MEDLINE | ID: mdl-38292174

Atherosclerotic cardiovascular disease and its complications are a high-incidence disease worldwide. Numerous studies have shown that blood flow shear has a huge impact on the function of vascular endothelial cells, and it plays an important role in gene regulation of pro-inflammatory, pro-thrombotic, pro-oxidative stress, and cell permeability. Many important endothelial cell mechanosensitive genes have been discovered, including KLK10, CCN gene family, NRP2, YAP, TAZ, HIF-1α, NF-κB, FOS, JUN, TFEB, KLF2/KLF4, NRF2, and ID1. Some of them have been intensively studied, whereas the relevant regulatory mechanism of other genes remains unclear. Focusing on these mechanosensitive genes will provide new strategies for therapeutic intervention in atherosclerotic vascular disease. Thus, this article reviews the mechanosensitive genes affecting vascular endothelial cells, including classical pathways and some newly screened genes, and summarizes the latest research progress on their roles in the pathogenesis of atherosclerosis to reveal effective therapeutic targets of drugs and provide new insights for anti-atherosclerosis.

...