Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
Zhongguo Zhen Jiu ; 44(8): 947-50, 2024 Aug 12.
Article in Chinese | MEDLINE | ID: mdl-39111795

ABSTRACT

This paper introduces Professor WANG Haidong's approach to treat cervical vertigo with needle knife based on the holism of body-qi-spirit. Professor WANG Haidong, considering the etiology and pathogenesis of cervical vertigo, starting from the holism of body-qi-spirit, based on the anatomical structure, employs the "seven-neck points" technique to improve local blood supply and address the physical issue; guided by the Jingjin theory, he utilizes the "knot releasing technique" to disperse knots and relax sinews, thereby regulating qi. In addition, he uses the "bone puncturing technique at governor vessel" to uplift yang-qi and nourish the brain, thereby nurturing the spirit.


Subject(s)
Acupuncture Therapy , Vertigo , Humans , Vertigo/therapy , Acupuncture Therapy/instrumentation , Acupuncture Therapy/methods , Qi , Male , Acupuncture Points , Female
2.
Medicine (Baltimore) ; 103(32): e39256, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121332

ABSTRACT

Iron metabolism plays an important role in insulin resistance, and the triglyceride-glucose (TyG) index has been proposed in recent years as a more accessible and cost-effective marker for insulin resistance. This study aims to evaluate the association between iron metabolism markers, including ferritin (FER), transferrin (TRF), and transferrin receptor (TFR), and the TyG index. A total of 6524 Chinese individuals aged between 18 and 75 years were included in this study. Multivariable linear models were used to investigate the association between FER, TRF, and TFR levels, and the TyG index. Further subgroup analyses stratified by age and sex were also performed. There was a positive association between FER and TRF levels and the TyG index in all 3 multivariable linear regression models, regardless of stratification by sex and age. Additionally, TFR was positively associated with the TyG index among females and those aged ≥45 years, but not among males and those aged <45 years. Our findings reveal a positive association between FER and TRF levels and the TyG index in a Chinese population, while the association between TFR levels and the TyG index showed different patterns depending on age and gender.


Subject(s)
Biomarkers , Blood Glucose , Ferritins , Iron , Nutrition Surveys , Receptors, Transferrin , Transferrin , Triglycerides , Humans , Male , Female , Middle Aged , Adult , China , Cross-Sectional Studies , Triglycerides/blood , Receptors, Transferrin/blood , Ferritins/blood , Aged , Biomarkers/blood , Transferrin/analysis , Transferrin/metabolism , Iron/blood , Iron/metabolism , Adolescent , Blood Glucose/analysis , Blood Glucose/metabolism , Young Adult , Insulin Resistance
3.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999800

ABSTRACT

In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Th17 Cells , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Ileum/microbiology , Intestine, Small/microbiology , Intestine, Small/drug effects , Butyric Acid/pharmacology , Butyric Acid/metabolism , Tight Junctions/metabolism , Tight Junctions/drug effects , T-Lymphocytes, Regulatory , Intestinal Barrier Function
4.
Sci Rep ; 14(1): 16081, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38992114

ABSTRACT

Tumor-associated macrophages play a crucial role in the tumor microenvironment. Tripartite motif 59 (TRIM59), a member of the tripartite motif (TRIM) family, is known to be associated with immunological diseases and macrophage activation. The functional and molecular mechanisms by which TRIM59 affects the occurrence and development of colorectal cancer (CRC) through macrophages are still not well understood. To address this, we generated macrophage-specific TRIM59 conditional knockout mice and utilized these mice to establish colitis-associated cancer and MC38 transplanted CRC models for further investigation. We found that the deficiency of TRIM59 in macrophages inhibited colorectal tumorigenesis in mice. This tumor-suppressive effect was achieved by promoting the activation of M1 macrophages via STAT1 signaling pathway. Further mechanistic studies revealed that TRIM59 could regulate macrophage polarization by ubiquitinating and degrading STAT1. These findings provide evidence that TRIM59 deficiency promotes M1 macrophage activation and inhibits CRC through the STAT1 signaling pathway, suggesting that the TRIM59/STAT1 signaling pathway may be a promising target for CRC.


Subject(s)
Colorectal Neoplasms , Intracellular Signaling Peptides and Proteins , Macrophage Activation , Macrophages , Mice, Knockout , STAT1 Transcription Factor , Signal Transduction , Tripartite Motif Proteins , Animals , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Macrophage Activation/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Mice , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Macrophages/metabolism , Humans , Mice, Inbred C57BL
5.
Nat Commun ; 15(1): 5524, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951485

ABSTRACT

The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.


Subject(s)
CCCTC-Binding Factor , Neurodevelopmental Disorders , Organoids , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Humans , Animals , Mice , Neurodevelopmental Disorders/genetics , Organoids/metabolism , Mutation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Male , Chromatin/metabolism , Chromatin/genetics , Female , Brain/metabolism , Brain/pathology , Point Mutation , Human Embryonic Stem Cells/metabolism
6.
Ecotoxicol Environ Saf ; 283: 116779, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083870

ABSTRACT

Heavy metal pollution of the soil affects the environment and human health. Masson pine is a good candidate for phytoremediation of heavy metal in mining areas. Microorganisms in the rhizosphere can help with the accumulation of heavy metal in host plants. However, studies on its rhizosphere bacterial communities under heavy metal pollution are still limited. Therefore, in this study, the chemical and bacterial characteristics of Masson pine rhizosphere under four different levels of heavy metal pollution were investigated using 16 S rRNA gene sequencing, soil chemistry and analysis of plant enzyme activities. The results showed that soil heavy metal content, plant oxidative stress and microbial diversity damage were lower the farther they were from the mine dump. The co-occurrence network relationship of slightly polluted soils (C1 and C2) was more complicated than that of highly polluted soils (C3 and C4). Relative abundance analysis indicated Sphingomonas and Pseudolabrys were more abundant in slightly polluted soils (C1 and C2), while Gaiella and Haliangium were more abundant in highly polluted soils (C3 and C4). LEfSe analysis indicated Burkholderiaceae, Xanthobacteraceae, Gemmatimonadaceae, Gaiellaceae were significantly enriched in C1 to C4 site, respectively. Mantel analysis showed that available cadmium (Cd) contents of soil was the most important factor influencing the bacterial community assembly. Correlation analysis showed that eight bacterial genus were significantly positively associated with soil available Cd content. To the best of our knowledge, this is the first study to investigate the rhizospheric bacterial community of Masson pine trees under different degrees of heavy metal contamination, which lays the foundation for beneficial bacteria-based phytoremediation using Masson pines in the future.

7.
J Phys Condens Matter ; 36(37)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38848731

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides lateral heterostructures exhibit excellent performance in electrics and optics. The electron transport of the heterostructures can be effectively regulated by ingenious design. In this study, we construct a monolayer MoSe2/WSe2lateral heterostructure, covalently connecting monolayer MoSe2and monolayer WSe2. Using the Extended Huckel Theory method, we explored current-voltage characteristics under varied conditions, including altering carrier density, atomic replacement and interface angles. Calculations demonstrate a significant electrical rectification ratio (ERR) ranging from 200 to 800. Additionally, Employing Density Functional Theory with non-equilibrium Green's function method, we investigated electronic properties, attributing the rectification effect to electronic state distribution differences, asymmetric transmission coefficients and band bending of projected local density of states. The expandability of the interfacial energy barrier enhances the rectification effect through adjustments in carrier concentration, atomic replacements and interface size. However, these enhancements introduce challenges such as increased electron-boundary scattering and reduced ambipolarity, resulting in a lower ERR. This study provides valuable theoretical insights for optimizing 2D electronic diode devices, offering avenues for precise control of the rectification effect.

8.
Zhongguo Zhen Jiu ; 44(6): 699-702, 2024 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-38867634

ABSTRACT

The paper introduces professor WANG Haidong's clinical experience in treatment of wrist rheumatoid arthritis with acupotomy mobilization at the muscle regions (sinews/fascia) of three yang meridians of hand. Professor WANG Haidong believes that wrist rheumatoid arthritis belongs to the disorder of meridian muscle regions and is especially associated with the damage of the muscle regions of three yang meridians of hand running through the wrist. Under the guidance of meridian muscle region theory, on the basis of modern anatomy, and the treatment principle, "needling the affected areas may treat disorders of sinews/fascia and dysfunction of meridians simultaneously", acupotomy mobilization is adopted to balance sinews/fascia and bones, operated directly at the involved meridian muscle regions. Besides the foci (palpable knotted sites) on the distribution of muscle regions, acupoints along the affected meridians are stimulated in combination. With this therapy, after determining the location of illness, both the disorder of sinews/fascia and that of meridians can be treated.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Arthritis, Rheumatoid , Meridians , Adult , Female , Humans , Male , Middle Aged , Arthritis, Rheumatoid/therapy , Hand/physiopathology , Muscle, Skeletal , Wrist/physiopathology
9.
Front Endocrinol (Lausanne) ; 15: 1398367, 2024.
Article in English | MEDLINE | ID: mdl-38938515

ABSTRACT

Study Design: Retrospective radiological analysis. Objective: The aim of this study is to evaluate the distribution of bone mineral density (BMD) in lumbar vertebrae using the Hounsfield unit (HU) measurement method and investigate the clinical implications of HU values for assessing lumbar vertebrae BMD. Method: Two hundred and ninety-six patients were retrospectively reviewed and divided into six groups according to age: Group 1(20-29 years old), Group 2 (30-39 years old), Group 3 (40-49 years old), Group 4 (50-59 years old), Group 5 (60-69 years old), Group 6 (70-79 years old). Six different locations from each vertebra of L1-L5 were selected as regions of interest: the anterior, middle and posterior parts of the upper and lower slices of the vertebrae. HU values were measured for the six regions of interest, followed by statistical analysis. Results: The HU values of vertebrae showed a decreasing trend from young patients to elderly patients in Group 1 to Group 5. There was no significant difference in HU values among different vertebrae in the same age group. In all age groups, the HU values of the anterior and posterior part of the vertebral body were significantly different from L1 to L3, with the anterior part of the vertebral body having lower HU values than the posterior part. The HU values of the anterior and posterior part of the vertebral body of L4 and L5 were statistically significant only in Group 5 and Group 6, and the HU values of the anterior part of the vertebral body were lower than those of the posterior part. The HU values of posterior part of L4 and L5 in Group6 were higher than those in Group5. Conclusion: Bone mineral density in the lumbar vertebrae is not uniformly distributed, potentially attributed to varying stress stimuli. The assessment of local HU values in the lumbar spine is of significant importance for surgical treatment.


Subject(s)
Bone Density , Lumbar Vertebrae , Humans , Lumbar Vertebrae/diagnostic imaging , Bone Density/physiology , Middle Aged , Female , Male , Retrospective Studies , Adult , Aged , Young Adult , Tomography, X-Ray Computed , Osteoporosis/diagnostic imaging , Absorptiometry, Photon
10.
Pest Manag Sci ; 80(9): 4533-4542, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38742618

ABSTRACT

BACKGROUND: Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS: T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION: These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.


Subject(s)
Cell Wall , Phytophthora , Cell Wall/metabolism , Phytophthora/physiology , Sequence Analysis, RNA , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hypocreales/physiology , Hypocreales/genetics , Antibiosis
11.
PLoS One ; 19(5): e0302124, 2024.
Article in English | MEDLINE | ID: mdl-38696446

ABSTRACT

Image data augmentation plays a crucial role in data augmentation (DA) by increasing the quantity and diversity of labeled training data. However, existing methods have limitations. Notably, techniques like image manipulation, erasing, and mixing can distort images, compromising data quality. Accurate representation of objects without confusion is a challenge in methods like auto augment and feature augmentation. Preserving fine details and spatial relationships also proves difficult in certain techniques, as seen in deep generative models. To address these limitations, we propose OFIDA, an object-focused image data augmentation algorithm. OFIDA implements one-to-many enhancements that not only preserve essential target regions but also elevate the authenticity of simulating real-world settings and data distributions. Specifically, OFIDA utilizes a graph-based structure and object detection to streamline augmentation. Specifically, by leveraging graph properties like connectivity and hierarchy, it captures object essence and context for improved comprehension in real-world scenarios. Then, we introduce DynamicFocusNet, a novel object detection algorithm built on the graph framework. DynamicFocusNet merges dynamic graph convolutions and attention mechanisms to flexibly adjust receptive fields. Finally, the detected target images are extracted to facilitate one-to-many data augmentation. Experimental results validate the superiority of our OFIDA method over state-of-the-art methods across six benchmark datasets.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Humans
12.
Front Immunol ; 15: 1361531, 2024.
Article in English | MEDLINE | ID: mdl-38698849

ABSTRACT

The whole-genome sequence of an African swine fever virus (ASFV) strain (HuB/HH/2019) isolated from Hubei, China, was highly similar to that of the Georgia 2007/1 strain ASFV. After infection with strong strains, domestic pigs show typical symptoms of infection, including fever, depression, reddening of the skin, hemorrhagic swelling of various tissues, and dysfunction. The earliest detoxification occurred in pharyngeal swabs at 4 days post-infection. The viral load in the blood was extremely high, and ASFV was detected in multiple tissues, with the highest viral loads in the spleen and lungs. An imbalance between pro- and anti-inflammatory factors in the serum leads to an excessive inflammatory response in the body. Immune factor expression is suppressed without effectively eliciting an immune defense. Antibodies against p30 were not detected in acutely dead domestic pigs. Sequencing of the peripheral blood mononuclear cell transcriptome revealed elevated transcription of genes associated with immunity, defense, and stress. The massive reduction in lymphocyte counts in the blood collapses the body's immune system. An excessive inflammatory response with a massive reduction in the lymphocyte count may be an important cause of mortality in domestic pigs. These two reasons have inspired researchers to reduce excessive inflammatory responses and stimulate effective immune responses for future vaccine development.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever/virology , African Swine Fever/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Cytokines , Lymphocytes/immunology , Lymphocytes/metabolism , Genotype , Viral Load , Sus scrofa , Lymphocyte Count
13.
Sci Rep ; 14(1): 7772, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565874

ABSTRACT

In recent years, the issue of energy consumption in farm buildings has received much attention. The roofs of farm buildings in Northwest China have a variety of roof forms. This paper presents the implementation of first fully confirmed the indoor thermal environment of different roof construction was significantly effected by periodic thermogenesis. In order to determine the indoor temperature distribution of the farmhouse in summer in Ningxia Hui Autonomous Region, we provided the heat transfer coefficient data of the farmhouse envelope, also detailed in the manuscript. Model of Thermal Mass Transport enables fast and accurately simulates the indoor temperature distribution of farmhouses with different roof forms on the same day, taking into account the climate zone of the region. This is despite the phase delay time of indoor temperatures for different roof forms caused by periodic initial temperature boundaries ranged from 1.55 to 2.78 h , and the phase delay angle ranged from 23.25 ∘ to 41.7 ∘ . Extensive simulated results revealed individual variability in the role of roof form, demonstrating indoor temperatures in farmhouses corresponding to different climatic zones. In addition, by analyzing and discussing the indoor temperature phase delay angle and delay time for each type of roof forms, statistical results identified the advantages of Non-equal-sloped roof as a local farmhouse roof.

14.
Aging (Albany NY) ; 16(5): 4609-4630, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38428405

ABSTRACT

Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.


Subject(s)
Exosomes , MicroRNAs , Satellite Cells, Skeletal Muscle , Animals , Mice , Cell Proliferation/genetics , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/physiology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/metabolism
15.
BMC Vet Res ; 20(1): 53, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341563

ABSTRACT

BACKGROUND: Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT: A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS: These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.


Subject(s)
Enterocytozoon , Microsporidiosis , Humans , Animals , Multilocus Sequence Typing/veterinary , Enterocytozoon/genetics , Foxes/genetics , Raccoon Dogs , Molecular Epidemiology , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Feces , Prevalence , Phylogeny , China/epidemiology , Genotype
16.
J Hazard Mater ; 466: 133688, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38310845

ABSTRACT

Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.


Subject(s)
Oryza , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Oryza/genetics , Lignin , Gene Expression Profiling , Photosynthesis , Plant Roots/genetics , Plant Roots/chemistry , Soil Pollutants/toxicity , Soil Pollutants/analysis
17.
Nutrients ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398817

ABSTRACT

Obesity and its complications constitute a main threat to global human health. The purpose of this investigation was to explore the influences of Clostridium tyrobutyricum (Ct) on lipid metabolism, intestinal barrier function, and intestinal microbiome in obese mice induced by a high-fat diet (HFD). After establishing the obesity model, 107 CFU/mL and 108 CFU/mL C. tyrobutyricum were used to intervene in HFD-fed mice by gavage for six weeks, and indexes related to obesity were measured. In the liver of HFD-fed mice, the results revealed that C. tyrobutyricum reduced liver weight and the levels of triglyceride (TG), total cholesterol (TC), and nonesterified fatty acid (NEFA), along with decreasing red lipid droplets and fat vacuoles. After C. tyrobutyricum intervention, the mRNA expression of peroxisome proliferator-activated receptor-γ (PPARγ) was downregulated, and AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-α (PPARα), adipose triglyceride lipase (ATGL), and hormone-sensitive lipase (HSL) were upregulated in the liver. Additionally, C. tyrobutyricum alleviated intestinal morphology injury caused by HFD, decreased the expression of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-1ß in the colon, and upregulated tight junction protein expression. In addition, 16S rRNA sequencing revealed that C. tyrobutyricum increases the diversity of intestinal microbiota. Overall, C. tyrobutyricum improved HFD-induced lipid metabolism disorders, preserved the intestinal barrier's integrity, and modulated the structure of the intestinal microbiome. These findings provide a novel insight into the role of C. tyrobutyricum as a probiotic in regulating lipid metabolism.


Subject(s)
Clostridium tyrobutyricum , Gastrointestinal Microbiome , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Lipid Metabolism , Gastrointestinal Microbiome/physiology , Mice, Obese , Intestinal Barrier Function , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Liver/metabolism , Obesity/metabolism , Mice, Inbred C57BL
18.
FEBS Open Bio ; 14(4): 584-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366735

ABSTRACT

Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.


Subject(s)
Muscular Atrophy , Oleanolic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
19.
Acta Physiol (Oxf) ; 240(3): e14103, 2024 03.
Article in English | MEDLINE | ID: mdl-38288566

ABSTRACT

AIM: Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS: Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS: During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION: Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.


Subject(s)
Extracellular Vesicles , Fibronectins , Mice , Animals , Fibronectins/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, White , Obesity/metabolism , Transcription Factors/metabolism , Thermogenesis , Extracellular Vesicles/metabolism , Adipose Tissue, Brown
20.
J Cancer ; 15(3): 737-746, 2024.
Article in English | MEDLINE | ID: mdl-38213734

ABSTRACT

This study was designed to develop a model of serum thymidine kinase 1 protein (STK1p) concentration in combination with low-dose computed tomography (LDCT) to predict the risk of benign pulmonary nodules progressing into lung cancer within three years in a large screening population. The study included a retrospective cohort of 6,841 individuals aged > 30 years who had LDCT-detected pulmonary nodules, but no cancer history or baseline cancer. The outcome was a lung cancer diagnosis recorded within three years after the first detection of pulmonary nodules. The adaptive least absolute shrinkage and selection operator was used to select candidate predictors and fit a logistic model. The model was validated internally by examining discrimination (area under the receiver operating characteristic curve (AUC), calibration (calibration plot)) and net benefit. A web application was developed based on the model. The results showed that the proportion of incident lung cancer cases was 0.79% (n=52). Predictors selected for the model were STK1p and three LDCT parameters (nodule size, type, and count). The AUC of the model was 0.91 (95% confidence interval (CI): 0.86, 0.96). The model had satisfactory discrimination at internal validation (AUC: 0.90 (0.84, 0.96)) and in subgroups (AUC=0.69-0.93). The high-risk group identified by the model exhibited a significantly higher three-year lung cancer risk than the low-risk group (odds ratio (OR): 66.03 (95% CI: 30.49, 162.98)). We concluded that the novel model of STK1p and LDCT parameters together can be used to accurately predict the three-year risk of lung cancer in people with pulmonary nodules.

SELECTION OF CITATIONS
SEARCH DETAIL