Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Colloid Interface Sci ; 670: 486-498, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38772264

ABSTRACT

Establishing a physical barrier between the peritoneum and the cecum is an effective method to reduce the risk of postoperative abdominal adhesions. Meloxicam (MX), a nonsteroidal anti-inflammatory drug has also been applied to prevent postoperative adhesions. However, its poor water solubility has led to low bioavailability. Herein, we developed an injectable hydrogel as a barrier and drug carrier for simultaneous postoperative adhesion prevention and treatment. A third-generation polyamide-amine dendrimer (G3) was exploited to dynamically combine with MX to increase the solubility and the bioavailability. The formed G3@MX was further used to crosslink with poly-γ-glutamic acid (γ-PGA) to prepare a hydrogel (GP@MX hydrogel) through the amide bonding. In vitro and in vivo experiments evidenced that the hydrogel had good biosafety and biodegradability. More importantly, the prepared hydrogel could control the release of MX, and the released MX is able to inhibit inflammatory responses and balance the fibrinolytic system in the injury tissues in vivo. The tunable rheological and mechanical properties (compressive moduli: from âˆ¼ 57.31 kPa to âˆ¼ 98.68 kPa;) and high anti-oxidant capacity (total free radical scavenging rate of âˆ¼ 94.56 %), in conjunction with their syringeability and biocompatibility, indicate possible opportunities for the development of advanced hydrogels for postoperative tissue adhesions management.


Subject(s)
Dendrimers , Hydrogels , Meloxicam , Nylons , Polyglutamic Acid , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Polyglutamic Acid/chemistry , Polyglutamic Acid/pharmacology , Polyglutamic Acid/analogs & derivatives , Nylons/chemistry , Tissue Adhesions/prevention & control , Dendrimers/chemistry , Dendrimers/pharmacology , Meloxicam/chemistry , Meloxicam/pharmacology , Meloxicam/administration & dosage , Mice , Inflammation/prevention & control , Inflammation/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Rats , Rats, Sprague-Dawley , Fibrinolysis/drug effects , Postoperative Complications/prevention & control , Particle Size , Injections , Drug Carriers/chemistry
2.
Small ; 20(28): e2311431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366284

ABSTRACT

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.

3.
J Colloid Interface Sci ; 662: 596-603, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367577

ABSTRACT

Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.

4.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38415324

ABSTRACT

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

6.
RSC Adv ; 13(12): 8130-8135, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36922949

ABSTRACT

The comprehensive performance of the state-of-the-art solid-state electrolytes (SSEs) cannot match the requirements of commercial applications, and constructing an organic-inorganic composite electrolyte in situ on a porous electrode is an effective coping strategy. However, there are few studies focused on the influence of inorganic ceramics on the polymerization of multi-organic components. In this study, it was found that the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZO) weakens the interaction between different polymers and makes organic and inorganic components contact directly in the solid electrolyte. These suppress the segregation of components in the in situ polymerized composite SSE, leading to a decrease in the polymer crystallization and improvement of electrolyte properties such as electrochemical stability window and mechanical properties. The composite solid-state electrolyte can be in situ constructed on different porous electrodes, which can establish close contact with active material particles, showing an ionic conductivity 4.4 × 10-5 S cm-1 at 25 °C, and afford the ternary cathode stability for 100 cycles.

7.
Asian J Androl ; 25(3): 426-432, 2023.
Article in English | MEDLINE | ID: mdl-36510858

ABSTRACT

This study assessed the effects of a simulated high-altitude environment on the reproductive system of prepubertal male rats and the reversibility of these effects upon return to a normal environment. Three-week-old male Wistar rats were randomly allocated to 4 groups that were exposed to different conditions: a normal environment for 6 weeks and 12 weeks, respectively, hypobaric hypoxia for 6 weeks, and hypobaric hypoxia for 6 weeks followed by a normal environment for 6 weeks. Multiple pathophysiological parameters were evaluated at the histological, endocrine, and molecular levels. Hypobaric hypoxia exposure for 6 weeks during the prepubertal phase significantly altered physiological parameters, body functions, blood indices, and reproductive potential. Six weeks after returning to a normal environment, the damaged reproductive functions partially recovered due to compensatory mechanisms. However, several changes were not reversed after returning to a normal environment for 6 weeks, including disorders of body development and metabolism, increased red blood cells, increased fasting blood glucose, abnormal blood lipid metabolism, decreased testicular and epididymis weights, abnormal reproductive hormone levels, excessive apoptosis of reproductive cells, and decreased sperm concentration. In summary, a hypobaric hypoxic environment significantly impaired the reproductive function of prepubertal male rats, and a return to normal conditions during the postpubertal phase did not fully recover these impairments.


Subject(s)
Altitude , Semen , Rats , Male , Animals , Rats, Wistar , Semen/metabolism , Hypoxia/metabolism , Hypoxia/pathology , Genitalia, Male
8.
Sensors (Basel) ; 22(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36560046

ABSTRACT

With the development of deep learning, the use of convolutional neural networks (CNN) to improve the land cover classification accuracy of hyperspectral remote sensing images (HSRSI) has become a research hotspot. In HSRSI semantics segmentation, the traditional dataset partition method may cause information leakage, which poses challenges for a fair comparison between models. The performance of the model based on "convolutional-pooling-fully connected" structure is limited by small sample sizes and high dimensions of HSRSI. Moreover, most current studies did not involve how to choose the number of principal components with the application of the principal component analysis (PCA) to reduce dimensionality. To overcome the above challenges, firstly, the non-overlapping sliding window strategy combined with the judgment mechanism is introduced, used to split the hyperspectral dataset. Then, a PSE-UNet model for HSRSI semantic segmentation is designed by combining PCA, the attention mechanism, and UNet, and the factors affecting the performance of PSE-UNet are analyzed. Finally, the cumulative variance contribution rate (CVCR) is introduced as a dimensionality reduction metric of PCA to study the Hughes phenomenon. The experimental results with the Salinas dataset show that the PSE-UNet is superior to other semantic segmentation algorithms and the results can provide a reference for HSRSI semantic segmentation.


Subject(s)
Arthropods , Hyperspectral Imaging , Animals , Semantics , Algorithms , Judgment , Image Processing, Computer-Assisted
9.
Front Immunol ; 13: 1023865, 2022.
Article in English | MEDLINE | ID: mdl-36439190

ABSTRACT

Activation of integrins is crucial for recruitment of flowing leukocytes to inflammatory or injured vascular sites, but their spatiotemporal characteristics are incompletely understood. We discovered that ß2-integrin activation over the entire surface of neutrophils on immobilized P-selectin occurred via mitogen-activated protein kinase (MAPK) or non-MAPK signaling with a minute-level timescale in a force-dependent manner. In flow, MAPK signaling required intracellular Ca2+ release to activate integrin within 2 min. Integrin activation via non-MAPK signaling occurred first locally in the vicinity of ligated P-selectin glycoprotein ligand-1 (PSGL-1) within sub-seconds, and then over the entire cell surface within 1 min in an extracellular Ca2+ influx-dependent manner. The transition from a local (but rapid) to global (but slow) activation mode was triggered by ligating the freshly activated integrin. Lipid rafts, moesin, actin, and talin were involved in non-MAPK signaling. Fluid loads had a slight effect on local integrin activation with a second-level timescale, but served as enhancers of global integrin activation.


Subject(s)
CD18 Antigens , P-Selectin , Humans , CD18 Antigens/metabolism , P-Selectin/metabolism , Neutrophils/metabolism , Integrins/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism
10.
Front Microbiol ; 13: 959107, 2022.
Article in English | MEDLINE | ID: mdl-36187949

ABSTRACT

ß-Lactams have been a clinical focus since their emergence and indeed act as a powerful tool to combat severe bacterial infections, but their effectiveness is threatened by drug resistance in bacteria, primarily by the production of serine- and metallo-ß-lactamases. Although once of less clinical relevance, metallo-ß-lactamases are now increasingly threatening. The rapid dissemination of resistance mediated by metallo-ß-lactamases poses an increasing challenge to public health worldwide and comprises most existing antibacterial chemotherapies. Regrettably, there have been no clinically available inhibitors of metallo-ß-lactamases until now. To cope with this unique challenge, researchers are exploring multidimensional strategies to combat metallo-ß-lactamases. Several studies have been conducted to develop new drug candidates or calibrate already available drugs against metallo-ß-lactamases. To provide an overview of this field and inspire more researchers to explore it further, we outline some promising candidates targeting metallo-ß-lactamase producers, with a focus on Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Promising candidates in this review are composed of new antibacterial drugs, non-antibacterial drugs, antimicrobial peptides, natural products, and zinc chelators, as well as their combinations with existing antibiotics. This review may provide ideas and insight for others to explore candidate metallo-ß-lactamases as well as promote the improvement of existing data to obtain further convincing evidence.

11.
Article in English | MEDLINE | ID: mdl-35886094

ABSTRACT

It is of great practical significance to understand the current situation of urban land carrying capacity, explore its potential space, and continuously improve the economic adaptability and resilience and population carrying capacity of megacities. Based on the guiding principle of territorial spatial division and the concept of moderate-scale resilient cities, combined with GIS technology, this study aims to divide land spaces into three types and construct different index systems to evaluate the land carrying capacity of Shanghai in different spaces. Furthermore, we propose different schemes of estimating subspace land population carrying capacity, and the carrying potential of land population is analysed as well. The acquired results demonstrate three key points. Firstly, the total land population capacity of Shanghai is estimated at 25,476.61-32,047.27 people, with urban land space being the most dominant for the city's population carrying capacity. Furthermore, the inner suburbs carry the largest population, and the urban centre carries a larger population density than other areas. Secondly, there are significant spatial differences in land population carrying potential. Compared with the demographic data from 2017, Shanghai still has a population carrying potential of 1293.30-7863.97 people and a suitable population carrying potential of 4578.64 people. The population of the urban centre is near the upper limit of the estimated population carrying capacity, and the suburbs, especially the outer suburbs, have large population carrying potential. Thirdly, the estimation method adopted in this study can effectively reveal the spatial differences in population carrying capacity and the potential of different land spaces and different regions in Shanghai, with the estimation results being highly credible. The results will provide references for the improvement of the multi-scenario population planning strategy in Shanghai, as well as enrich the research span and methods currently employed in land carrying capacity.


Subject(s)
Conservation of Natural Resources , China , Cities , Humans
12.
Front Microbiol ; 13: 831272, 2022.
Article in English | MEDLINE | ID: mdl-35308385

ABSTRACT

Humankind has been interested in reproduction for millennia. Infertility, in which male factors contribute to approximately 50%, is estimated to concern over 72 million people worldwide. Despite advances in the diagnosis, medical treatment, and psychosocial management of male infertility over the past few decades, approximately 30% of male infertility is still thought to be idiopathic. Despite emerging advances in the microbiome associated with male infertility have indicated that the microbiome may be a key factor to the management of male infertility, roles, and mechanisms of the microbiome remain ambiguous. Here, we mainly discussed the association between microbial infection in the genital tract and male infertility, effect of antimicrobial therapy on male reproduction, association between microbial dysbiosis and male infertility, and effect of probiotic intervention on male reproduction. This review made progress toward establishing a relationship between the microbiome and male infertility, and explored the role of the microbiome in male infertility. We call for more high-quality studies to focus on the relationship between microbes and male infertility, and strongly suggest increasing awareness among sterile males with microbial infection and/or microbial dysbiosis when they seek fertility help.

13.
Entropy (Basel) ; 25(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36673202

ABSTRACT

Solving the eigenproblems of Hermitian matrices is a significant problem in many fields. The quantum resonant transition (QRT) algorithm has been proposed and demonstrated to solve this problem using quantum devices. To better realize the capabilities of the QRT with recent quantum devices, we improve this algorithm and develop a new procedure to reduce the time complexity. Compared with the original algorithm, it saves one qubit and reduces the complexity with error ϵ from O(1/ϵ2) to O(1/ϵ). Thanks to these optimizations, we can obtain the energy spectrum and ground state of the effective Hamiltonian of the water molecule more accurately and in only 20 percent of the time in a four-qubit processor compared to previous work. More generally, for non-Hermitian matrices, a singular-value decomposition has essential applications in more areas, such as recommendation systems and principal component analysis. The QRT has also been used to prepare singular vectors corresponding to the largest singular values, demonstrating its potential for applications in quantum machine learning.

14.
J Cardiovasc Pharmacol ; 77(3): 370-377, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33662979

ABSTRACT

ABSTRACT: Chinese people have used the root of Salvia miltiorrhiza Bunge (called "Danshen" in Chinese) for centuries as an anticancer agent, anti-inflammatory agent, antioxidant, and cardiovascular disease drug. In addition, Danshen is considered to be a drug that can improve ischemia/reperfusion (I/R)-induced myocardium injury in traditional Chinese medicine. However, Danshen is a mixture that includes various bioactive substances. In this study, we aimed to identify the protective component and mechanism of Danshen on myocardium through network pharmacology and molecular simulation methods. First, cryptotanshinone (CTS) was identified as a potential active compound from Danshen that was associated with apoptosis by a network pharmacology approach. Subsequently, biological experiments validated that CTS inhibited ischemia/reperfusion-induced cardiomyocyte apoptosis in vivo and in vitro. Molecular docking techniques were used to screen key target information. Based on the simulative results, MAPKs were verified as well-connected molecules of CTS. Western blotting assays also demonstrated that CTS could enhance MAPK expression. Furthermore, we demonstrated that inhibition of the MAPK pathway reversed the CTS-mediated effect on cardiomyocyte apoptosis. Altogether, our work screened out CTS from Danshen and demonstrated that it protected cardiomyocytes from apoptosis.


Subject(s)
Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Phenanthrenes/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 3/genetics , Molecular Docking Simulation , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Network Pharmacology , Salvia miltiorrhiza , Signal Transduction
15.
Mol Cell Biochem ; 476(5): 2061-2073, 2021 May.
Article in English | MEDLINE | ID: mdl-33515383

ABSTRACT

Studies have reported that miR-195-5p plays a role in the Hirschsprung disease (HSCR). Our previous work found GDNF family receptor alpha 4 (GFRA4) is also associated with HSCR. In this study, we focused on whether miR-195-5p induces the absence of enteric neurons and enteric neural crest in HSCR by regulating GFRA4. The expression levels of GFRA4 and miR-195-5p in colon tissues were evaluated by real-time PCR (RT-PCR) assay. We overexpressed GFRA4 or miR-195-5p in SH-SY5Y cells, the cell proliferation, cell cycle, apoptosis and invasion were subsequently investigated by CCK-8 assay, EdU staining, Flow cytometry analysis and Transwell assay, respectively. We also established the xenograft model to detect the effect of miR-195-5p on tumor growth and GFRA4 and p-RET expressions. GFRA4 expression was significantly downregulated in the HSCR colon tissues when compared with that in the control tissues. Overexpression of GFRA4 significantly promoted proliferation, invasion and cell cycle arrest, and inhibited apoptosis of SH-SY5Y cells. We also proved that GFRA4 is a direct target of miR-195-5p, and miR-195-5p inhibited proliferation, invasion, cell cycle arrest and differentiation, and accelerated apoptosis in SH-SY5Y cells which can be reversed by GFRA4 overexpression. Furthermore, we demonstrated that miR-195-5p suppressed tumor growth, and observably decreased GFRA4 and p-RET expressions. Our findings suggest that miR-195-5p plays an important role in the pathogenesis of HSCR. MiR-195-5p inhibited proliferation, invasion and cell cycle arrest, and accelerated apoptosis of nerve cells by targeting GFRA4.


Subject(s)
Cell Proliferation , Enteric Nervous System/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hirschsprung Disease/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Animals , Cell Line, Tumor , Enteric Nervous System/pathology , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Humans , Mice , MicroRNAs/genetics , Neurons/pathology
16.
J Cardiovasc Transl Res ; 14(4): 661-669, 2021 08.
Article in English | MEDLINE | ID: mdl-32285315

ABSTRACT

Chaperone-mediated autophagy (CMA) serves as a critical upstream regulator of lipophagy and lipid metabolism in hepatocyte. However, the role of CMA in lipid metabolism of macrophage, the typical component of atherosclerotic plaque, remains unclear. In our study, LAMP-2A (L2A, a CMA marker) was reduced in macrophages exposed to high dose of oleate, and lipophagy was impaired in advanced atherosclerosis in ApoE (-/-) mice. Primary peritoneal macrophages isolated from macrophage-specific L2A-deficient mice exhibited pronounced intracellular lipid accumulation. Lipid regulatory enzymes, including long-chain-fatty-acid-CoA ligase 1 (ACSL1) and lysosomal acid lipase (LAL), were increased and reduced in L2A-KO macrophage, respectively. Other lipid-related proteins, such as SR-A, SR-B (CD36), ABCA1, or PLIN2, were not associated with increased lipid content in L2A-KO macrophage. In conclusion, deficient CMA promotes lipid accumulation in macrophage probably by regulating enzymes involved in lipid metabolism. CMA may represent a novel therapeutic target to alleviate atherosclerosis by promoting lipid metabolism. Graphical abstract.


Subject(s)
Atherosclerosis/metabolism , Autophagy , Lipid Metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Macrophages, Peritoneal/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Autophagy/drug effects , Cells, Cultured , Coenzyme A Ligases/metabolism , Disease Models, Animal , Lipid Metabolism/drug effects , Lysosomal-Associated Membrane Protein 2/genetics , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oleic Acid/toxicity , Sterol Esterase/metabolism
17.
Cell Cycle ; 19(21): 2793-2810, 2020 11.
Article in English | MEDLINE | ID: mdl-33064976

ABSTRACT

Prostate cancer (PC) is the most common malignancy in men. As per recent findings, microRNA-300 (miR-300) were found to be overexpressed in numerous types of cancers. In this study, we aimed to explore the effects of miR-300 on the adhesion, invasion, and migration of PC cells by targeting Disabled 1 (DAB1). Firstly, the regulatory role of miRNAs on DAB1 was predicted by screening PC-related differentially expressed genes (DEGs). Immunohistochemistry was applied to determine the positive protein expression of DAB1, after which the target relationship between miR-300 and DAB1 was examined. Loss-of-function and gain-of-function experiments were conducted to determine cell proliferation, adhesion, migration, invasion capability, and cell cycle of PC cells. Our data illustrated that DAB1 had a low expression, while miR-300 was expressed at a relatively high level in PC tissues. Moreover, our clinicopathological analysis revealed that there was a correlation between miR-300 and tumor, node, metastases stage, Gleason score, and lymph node metastasis of PC patients. DAB1 was also found to be poorly expressed in PC based on the findings from the microarray analysis. The results from dual-luciferase reporter gene assay corroborated that miR-300 interacts with DAB1. Importantly, overexpression of miR-300 and/or si-DAB1 resulted in the enhancement of RAC1, MMP2, MMP9, CyclinD1, and CyclinE expressions, whereas the expression of DAB1 and Rap was reduced in PC cells, thus suggesting that down-regulated miR-300 suppressed proliferation, adhesion, migration, and invasion of PC cells. Collectively, our results provided evidence that down-regulation of miR-300 inhibits the adhesion, migration, and invasion of PC cells.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Adhesion/genetics , Cell Movement/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Prostatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Middle Aged , PC-3 Cells , Prostate/pathology , Prostatic Neoplasms/pathology
18.
J Hazard Mater ; 396: 122747, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32339879

ABSTRACT

Exposure to PM2.5 has been linked to respiratory disorders, yet knowledge of the molecular mechanism is limited. Here, PM2.5 was monitored and collected in central China, and its cytotoxicity mechanism on human bronchial epithelial cells (BEAS-2B) was investigated. With the average concentration of 109 ±â€¯69 µg/m3, PM2.5 was rich in heavy metals and organic pollutants. After exposure to PM2.5, the viability of BEAS-2B cells decreased, where 510 dysregulated genes were predicted to induce necroptosis via inhibiting ATP synthesis through the oxidative phosphorylation signaling pathway. Cellular experiments demonstrated that the content of ATP was downregulated, while the expression of RIP3, a necroptosis indicator, was upregulated. Besides, four enzymes in charge of ATP synthesis were downregulated, including ATP5F, NDUF, COX7A, and UQCR, while two genes of RELA and CAPN1 responsible for necroptosis were upregulated. Furthermore, N-acetylcysteine was applied as an enhancer for ATP synthesis, which reversed the downregulation of ATP5F, NDUF, and COX7A, and consequently alleviated the elevation of RELA, CAPN1, and RIP3. In conclusion, PM2.5 exposure downregulates ATP5F, NDUF, COX7A, and UQCR, and that inhibits ATP synthesis via the oxidative phosphorylation signaling pathway, which subsequently upregulates RELA and CAPN1 and ultimately leads to necroptosis of BEAS-2B cells.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Air Pollutants/toxicity , China , Epithelial Cells , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Signal Transduction
19.
Medicine (Baltimore) ; 98(28): e16202, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31305401

ABSTRACT

The purpose of this study was to explore the diagnostic significance of abdominal sonography (AUS) in infants with Necrotizing enterocolitis (NEC) admitted to a neonatal intensive care unit to better evaluate the ability of AUS to differentiate necrotizing enterocolitis from other intestinal diseases.All patients diagnosed with NEC at the Department of General Surgery and Neonatal Surgery, Qilu Children's Hospital between 1st, Jun, 2010 and 30th, Dec, 2015. The logistic regression analysis and the area under receiver operating characteristic (ROC) curve (AUCs) were also used to identify the sonographic factors for diagnosing NEC.For the entire cohort of 91 patients, we divided these patients into suspected NEC (n = 35) group and definite NEC (n = 56) group. After adjusting for competing sonographic factors, we identified that thick bowel wall (more than 2.5 mm) (P = .013, OR: 1.246), intramural gas (pneumatosis intestinalis) (P = .002, OR:1.983), portal venous gas (P = .022, OR:1.655) and reduced peristalsis (P = .011, OR:1.667) were independent diagnostic factors associated with NEC. We built a logistic model to diagnose NEC according to the results of multivariable logistic regression analysis. We found the AUROC for thick bowel wall (more than 2.5 mm), intramural gas (pneumatosis intestinalis), portal venous gas and reduced peristalsis were significantly lower than the AUROC for the logistic model was 0.841 (95% CI: 0.669 to 0.946).We found that thick bowel wall (more than 2.5 mm), intramural gas (pneumatosis intestinalis), portal venous gas and reduced peristalsis were independent diagnostic factors associated with NEC. The logistic model was significantly superior to the single sonographic parameter for diagnosing NEC.


Subject(s)
Abdomen/diagnostic imaging , Enterocolitis, Necrotizing/diagnostic imaging , Ultrasonography , Diagnosis, Differential , Female , Humans , Infant, Newborn , Infant, Premature , Intensive Care Units, Neonatal , Male , Prospective Studies
20.
Phys Rev Lett ; 122(9): 090504, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30932514

ABSTRACT

It is difficult to calculate the energy levels and eigenstates of a large physical system on a classical computer because of the exponentially growing size of the Hilbert space. In this work, we experimentally demonstrate a quantum algorithm which could solve this problem via simulated resonant transitions. Using a four-qubit quantum simulator in which two qubits are used as ancillas for control and measurement, we obtain the energy spectrum of a 2-qubit low-energy effective Hamiltonian of the water molecule. The simulated transitions allow the state of the quantum simulator to transform and access large regions of the Hilbert space, including states that have no overlap with the initial state. Furthermore, we make use of this algorithm to efficiently prepare specific eigenstates on the simulator according to the measured eigenenergies.

SELECTION OF CITATIONS
SEARCH DETAIL