Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
Environ Res ; : 119541, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960353

ABSTRACT

Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.

2.
Biomed Chromatogr ; : e5900, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937935

ABSTRACT

Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.

3.
ACS Nano ; 18(24): 15950-15957, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38847327

ABSTRACT

Resilient ceramic aerogels with a unique combination of lightweight, good high-temperature stability, high specific area, and thermal insulation properties are known for their promising applications in various fields. However, the mechanical properties of traditional ceramic aerogels are often constrained by insufficient interlocking of the building blocks. Here, we report a strategy to largely increase the interlocking degree of the building blocks by depositing a pyrolytic carbon (PyC) coating onto Si3N4 nanowires. The results show that the mechanical performances of the Si3N4 nanowire aerogels are intricately linked to the microstructure of the PyC nodes. The compression resilience of the Si3N4@PyC nanowire aerogels increases with an increase of the interlayer cross-linking in PyC. Additionally, benefiting from the excellent high-temperature stability of PyC, the Si3N4@PyC nanowire aerogels demonstrate significantly superior in situ resilience up to 1400 °C. The integrated mechanical and high-temperature properties of the Si3N4@PyC nanowire aerogels make them highly appealing for applications in harsh conditions. The facile method of manipulating the microstructure of the nodes may offer a perspective for tailoring the mechanical properties of ceramic aerogels.

4.
Bioresour Technol ; : 130947, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897548

ABSTRACT

Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.

5.
Technol Health Care ; 32(S1): 457-464, 2024.
Article in English | MEDLINE | ID: mdl-38759068

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) seriously affects children's health and quality of life, and early detection of CHD can reduce its impact on children's health. Tetralogy of Fallot (TOF) and ventricular septal defect (VSD) are two types of CHD that have similarities in echocardiography. However, TOF has worse diagnosis and higher morality than VSD. Accurate differentiation between VSD and TOF is highly important for administrative property treatment and improving affected factors' diagnoses. OBJECTIVE: TOF and VSD were differentiated using convolutional neural network (CNN) models that classified fetal echocardiography images. METHODS: We collected 105 fetal echocardiography images of TOF and 96 images of VSD. Four CNN models, namely, VGG19, ResNet50, NTS-Net, and the weakly supervised data augmentation network (WSDAN), were used to differentiate the two congenital heart diseases. The performance of these four models was compared based on sensitivity, accuracy, specificity, and AUC. RESULTS: VGG19 and ResNet50 performed similarly, with AUCs of 0.799 and 0.802, respectively. A superior performance was observed with NTS-Net and WSDAN specific for fine-grained image categorization tasks, with AUCs of 0.823 and 0.873, respectively. WSDAN had the best performance among all models tested. CONCLUSIONS: WSDAN exhibited the best performance in differentiating between TOF and VSD and is worthy of further clinical popularization.


Subject(s)
Deep Learning , Echocardiography , Heart Septal Defects, Ventricular , Tetralogy of Fallot , Ultrasonography, Prenatal , Humans , Tetralogy of Fallot/diagnostic imaging , Heart Septal Defects, Ventricular/diagnostic imaging , Echocardiography/methods , Female , Ultrasonography, Prenatal/methods , Pregnancy , Neural Networks, Computer , Diagnosis, Differential
6.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812179

ABSTRACT

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Animals , Rats , Male , Humans , Liver/drug effects , Liver/chemistry , Liver/metabolism , Mass Spectrometry/methods , Kidney/drug effects , Kidney/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus/drug therapy
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 932-941, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621900

ABSTRACT

This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.


Subject(s)
Bufanolides , Animals , Bufo bufo , Tissue Distribution , Bufonidae , Spectrometry, Mass, Electrospray Ionization
8.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575032

ABSTRACT

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Subject(s)
Durapatite , Peroxides , Water Pollutants, Chemical , Durapatite/chemistry , Water Pollutants, Chemical/analysis , Peroxides/chemistry , Metals, Heavy , Geologic Sediments/chemistry , Environmental Restoration and Remediation/methods
9.
Front Public Health ; 12: 1354071, 2024.
Article in English | MEDLINE | ID: mdl-38660354

ABSTRACT

The increasing number of older adult migrants is rapidly changing regional demographic and social structures in China. There is an urgent need to understand the spatial patterns and factors that influence older adults to migrate, especially the role of environmental health. However, this issue has been under-studied. This study focused on intra-provincial and inter-provincial older adult migrants as research subjects, estimated their spatial concentration index based on the iterative proportional fitting approach, and explored the factors influencing their migration using the GeoDetector Model. The results showed the following: (1) In 2015, more than 76% of inter-provincial older adult migrants were distributed in Eastern China, and most intra-provincial older adult migrants were scattered in sub-provincial cities. (2) Compared to factors relating to economy and amenities, environmental health by itself played a relatively weak role in the migration of older adults, but the interaction among environmental health, economy, and amenities was a key driving force of older adult migration. (3) There were significant differences in the dominant environmental health factors between inter-provincial migration and intra-provincial migration, which were temperature and altitude, respectively. Our findings can help policymakers focus on the composition of older adult migrants based on urban environmental health characteristics and rationally optimize older adult care facilities to promote supply-demand matching.


Subject(s)
Environmental Health , Humans , China , Aged , Environmental Health/statistics & numerical data , Female , Male , Transients and Migrants/statistics & numerical data , Middle Aged
10.
Stem Cell Rev Rep ; 20(5): 1311-1324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38502291

ABSTRACT

BACKGROUND: Cellular senescence is an important process related to the pathogenic mechanism of different disorders, especially bone loss. During senescence, bone marrow stromal cells (BMSCs) lose their self-renewal and functional differentiation abilities. Therefore, finding signals opposing the osteogenic differentiation of BMSCs within bone marrow microenvironment is the important for elucidating these above-mentioned mechanisms. Inflammatory cytokines affect bone physiology and remodeling. However, the function of interleukin-19 (IL-19) in skeletal system remains unclear. METHODS: The mouse model of IL-19 knockout was established through embryonic stem cell injection for analyzing how IL-19 affected bone formation. Micro-CT examinations were performed to evaluate bone microstructures. We performed a three-point bending test to measure bone stiffness and the ultimate force. Antibody arrays were performed to detect interleukin family members in bone marrow aspirates. BMSCs were cultured and induced for osteogenic differentiation. RESULTS: According to our findings, there was increased IL-19 accumulation within bone marrow in old mice relative to that in their young counterparts, resulting in bone loss via the inhibition of BMSCs osteogenic differentiation. Among Wnt/ß-catenin pathway members, IL-19 strongly upregulated sFRP1 via STAT3 phosphorylation. The inhibition of STAT3 and sFRP1 abolished IL-19's inhibition against the BMSCs osteogenic differentiation. CONCLUSION: To sum up, IL-19 inhibited BMSCs osteogenic differentiation in old mice. Our findings shed novel lights on pathogenic mechanism underlying age-related bone loss and laid a foundation for further research on identifying novel targets to treat senile osteoporosis.


Subject(s)
Cell Differentiation , Interleukins , Mesenchymal Stem Cells , Osteogenesis , STAT3 Transcription Factor , Animals , Mice , Interleukins/metabolism , Interleukins/genetics , Mesenchymal Stem Cells/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Bone Marrow/metabolism , Bone Marrow/pathology , Mice, Knockout , Wnt Signaling Pathway , Mice, Inbred C57BL , Osteoporosis/pathology , Osteoporosis/metabolism , Aging/pathology , Membrane Proteins
11.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38466032

ABSTRACT

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Subject(s)
Bone Cements , Polyethylene Glycols , Polyethylene Glycols/pharmacology , Prospective Studies , Bone Cements/pharmacology , Calcium Phosphates/pharmacology , Polymers , Dicarboxylic Acids/pharmacology
12.
Sci Total Environ ; 923: 171457, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442751

ABSTRACT

Bacteria have evolved a variety of strategies to defend themselves against cadmium toxicity, however, the specific mechanisms involved in the enhancement of bacterial cadmium resistance by sulfur sources are unclear. In this study, a novel cadmium (Cd)-tolerant bacterium, Stenotrophomonas geniculata G303, was isolated from activated sludge. The growth of strain G303 under diverse Cd concentrations was investigated, and the minimum inhibitory concentration of Cd was found to be 1 mM. Strain G303 effectively remove 94.7 % of Cd after 96 h of culture. Extracellular CdS was detected using multiple methods, with the CdS formed being aggregated in the biofilm. The addition of cysteine and thiosulfate to the medium significantly enhanced the Cd resistance and removal capacity of strain G303. Integrated genomic and proteomic analyses revealed that heavy metal transporters cooperate to resist Cd stress. Cysteine and thiosulfate improved Cd tolerance in strain G303 by upregulating nitrogen and energy metabolism. Proteins associated with nitrate reduction likely played a pivotal role in cysteine and thiosulfate metabolism. Notably, cysteine synthase and the SUF system played crucial roles in CdS formation. This study systematically explored the impact of cysteine and thiosulfate on the Cd resistance of strain G303, deepening our understanding of the microbial response mechanism to heavy metals.


Subject(s)
Cadmium , Metals, Heavy , Cadmium/toxicity , Cadmium/metabolism , Cysteine , Thiosulfates , Proteomics
13.
Front Physiol ; 15: 1365594, 2024.
Article in English | MEDLINE | ID: mdl-38505704

ABSTRACT

Metabolic syndrome is associated with cardiovascular dysfunction, including elevated sympathetic outflow. However, the underlying brain mechanisms are unclear. The nucleus tractus solitarius (NTS) critically regulates autonomic reflexes related to cardiovascular function and contains neurons projecting to the caudal ventrolateral medulla (CVLM). Nitric oxide (NO) is a diffusible free-radical messenger in the vascular, immune, and nervous systems. In this study, we determine if NO in the NTS is involved in the synaptic plasticity underlying the elevated sympathetic outflow in fructose-induced hypertension. We retrogradely labeled CVLM-projecting NTS neurons through the injection of FluoSpheres into the CVLM in a fructose-fed rat model to determine the cellular mechanism involved in increased sympathetic outflow. Fructose feeding increased the blood pressure and glucose levels, which represent metabolic syndrome. We found that fructose feeding reduces the NO precursor L-arginine-induced increase in the firing activity of CVLM-projecting NTS neurons. Furthermore, fructose feeding reduces the L-arginine-induced increase in presynaptic spontaneous glutamatergic synaptic inputs to NTS neurons, while NO donor DEA/NO produces an increase in glutamatergic synaptic inputs in fructose-fed rats similar to that in vehicle-treated rats. In addition, fructose feeding reduces the NO-induced depressor response and sympathoinhibition. These data suggested that fructose feeding reduced NO production and, thus, the subsequent NO-induced glutamate releases in the NTS and depressor response. The findings of this study provide new insights into the central mechanisms involved in the neural control of cardiovascular and autonomic functions in the NTS in metabolic syndrome.

14.
Sci Total Environ ; 923: 171451, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438027

ABSTRACT

This research presents the successful development and optimization of a spiropyran-assisted cellulose aerogel (CNF-SP) aerogel with UV-induced switchable wettability, and the evaluation of its performance as an effective oil sorbent for oil spill cleanup. The aerogel initially exhibited strong hydrophobicity (124°) and showed UV-induced switchable wettability due to the photo-response structure of spiropyran. Upon UV irradiation, the hydrophobicity of the aerogel could be switched to hydrophilicity (31°), while visible light irradiation could restore its hydrophobicity. The three-dimensional (3D) porous structure of the CNF-SP aerogel combined with the hydrophobic properties of spiropyranol led to its great oil adsorption performance (27-30 g/g of oil adsorption ratio). The central composite design (CCD) was applied to optimize the aerogel and investigate the effects of raw material ratio (i.e., carboxymethyl cellulose, carboxyethyl spiropyran, polyvinyl alcohol, and nano zinc oxide) on the oil sorption performance of the aerogel. The optimized CNF-SP aerogel demonstrated a high oil sorption efficiency, particularly in acid and cold environments. Moreover, the switchable function indicated that the aerogel exhibited reusability and renewability, with the added benefit of UV-induced oil recovery.

15.
Cancer Biol Ther ; 25(1): 2314322, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38361357

ABSTRACT

Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect in vitro in primary MM cells as well as in vivo in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46high/CD59high MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , ADP-ribosyl Cyclase 1/metabolism , CD59 Antigens/therapeutic use , Membrane Cofactor Protein/metabolism
16.
Sci Total Environ ; 918: 170606, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316307

ABSTRACT

Antimony (Sb) is increasingly released and poses a risk to the environment and human health. Antimonite (Sb(III)) oxidation can decrease Sb toxicity, but the current knowledge regarding the effects of Sb(III) and antimonate (Sb(V)) exposure is limited to wetland plants, especially the Sb speciation in plants. In this study, Phragmites australis and Potamogeton crispus were exposed to 10 and 30 mg/L Sb(III) or Sb(V) for 20 days. The total concentration, subcellular distribution, and concentration in the iron plaque of Sb were determined. The Sb speciation in plants was analyzed by HPLC-ICP-MS. It illustrated that Sb(III) exposure led to more Sb accumulation in plants than Sb(V) treatments, with the highest Sb concentration of 405.35 and 3218 mg/kg in Phragmites australis and Potamogeton crispus, respectively. In the subcellular distribution of Sb, accumulation of Sb mainly occurred in cell walls and cell cytosol. In Phragmites australis, the transport factor in the Sb(V) treatments was about 3 times higher than the Sb(III) treatments, however, it was lower in the Sb(V) treatments than Sb(III) treatments for Potamogeton crispus. Sb(V) was detected in the plants of Sb(III) treatments with different Sb(V)-total Sb vitro (Phragmites australis: 34 % and, Potamogeton crispus: 15 %), moreover, Sb(V) was also detected in the nutrient solution of Sb(III) treatments. Antimony exposure caused a reduction of the iron plaque formation, at the same time, the root aerenchyma formation was disrupted, and this phenomenon is more pronounced in the Sb(III) treatments. Moreover, the iron plaque has a higher sorption potential to Sb under Sb(III) exposure than that under Sb(V) exposure. The results can fill the gap for antinomy speciation in wetland plants and expand the current knowledge regarding the Sb translocation in wetland systems.


Subject(s)
Potamogetonaceae , Humans , Antimony , Wetlands , Poaceae , Iron
17.
RSC Adv ; 14(10): 6865-6873, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38410359

ABSTRACT

Flexible sensors have promising applications in the fields of health monitoring and artificial intelligence, which have attracted much attention from researchers. However, the design and manufacture of sensors with multiple sensing functions (like simultaneously having both temperature and pressure sensing capabilities) still present a significant challenge. Here, an ionic thermoelectric sensor for synchronous temperature and pressure sensing was developed on the basis of a carbon microtubes (CMTs)/potassium chloride (KCl)/gelatin composite consisting of gelatin as the polymer matrix, CMTs as the conductive material and KCl as the ion source. The designed CMTs/KCl/gelatin composite with the good ductility (830%) and flexibility can achieve a Seebeck coefficient of 4 mV K-1 and a dual stimulus responsiveness to pressure and temperature. In addition, not only the movement of the human body (e.g., fingers, arms), but also the temperature difference between the human body and the environment, were able to be monitored by the designed CMTs/KCl/gelatin sensors. This study provides a novel strategy for the design and preparation of high-performance flexible sensors by utilizing ion-gel thermoelectric materials and promotes the research of temperature and pressure sensing technologies.

18.
J Cell Physiol ; 239(6): e31218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38345408

ABSTRACT

One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular deposits of amyloid beta (Aß) peptide. In addition to Aß as the core component of the amyloid plaque, the amyloid precursor protein (APP) processing fragment Aß was also found accumulated around the plaque. The APPη pathway, mainly mediated by membrane-type 5 matrix metalloproteinase (MT5-MMP), represents an important factor in AD pathogenesis. The proamyloidogenic features of MT5-MMP could result from interactions with APP when trafficking between organelles, so determination of the location within the cell of APPη cleavage and interacting proteins of MT5-MMP affecting this process will be of priority in understanding the role of MT5-MMP in AD. In the present study, MT5-MMP was found to be located in the nucleus, cytosol, and cytosolic subcellular granules of CHO cells that stably expressed wild-type human APP751. MT5-MMP fusion proteins were constructed that could localize enzyme production in the Golgi apparatus, endosome, ER, mitochondria, or plasma membrane. The fusion proteins significantly increased sAPPη when directed to the endosome, Golgi apparatus, plasma membrane, or mitochondria. Since the C-terminal region of MT5-MMP is responsible for its intracellular location and trafficking, this domain was used as the bait in a yeast two-hybrid screen to identify MT5-MMP protein partners in a human brain cDNA library. Identified binding partners included N4BP2L1, TMX3, EIG121, bridging Integrator 1 (BIN1), RUFY4, HTRA1, and TMEM199. The binding of N4BP2L1, EIG121, BIN1, or TMX3 to MT5-MMP resulted in the most significant increase in sAPPη production. Thus, the action of MT5-MMP on APP occurs in multiple locations within the cell and is facilitated by site-specific binding partners.


Subject(s)
Amyloid beta-Protein Precursor , Protein Binding , Animals , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Cell Membrane/metabolism , CHO Cells , Cricetulus , Matrix Metalloproteinases, Membrane-Associated/metabolism , Matrix Metalloproteinases, Membrane-Associated/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Transport , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cricetinae
19.
Chemosphere ; 346: 140538, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303397

ABSTRACT

To enhance the polarization distribution of electron cloud density on the catalyst surface, we have introduced a novel bimetallic-substituted dual-reaction center (DRC) catalyst (FeCo-γ-Al2O3) comprising iron (Fe) and cobalt (Co) for the decomplexation and mineralization of heavy metal complex Ni-EDTA in this study. Compared to the catalysts doped solely with Fe or Co, the bimetal-doped catalyst offered several advantages, including enhanced electron cloud polarization distribution, additional electron transfer pathway, and improved capacity of free radical generation. Through DFT calculations and EPR tests, we have elucidated the influences of the catalyst's adsorption toward Ni-EDTA and its decomplexation products on the electron transfer between the pollutant and the catalyst. The competition between the pollutants and H2O2 affects the generation of free radicals in both electron-rich Fe and Co centers as well as electron-deficient Al center. Building on these findings, we have proposed a plausible removal mechanism of Ni-EDTA using the heterogeneous Fenton-like catalyst FeCo-γ-Al2O3. This study sheds light on the potential of FeCo-γ-Al2O3 as a DRC catalyst and emphasizes the significance of pollutant characteristics in determining the catalyst's performance.


Subject(s)
Electrons , Environmental Pollutants , Edetic Acid , Hydrogen Peroxide , Iron , Catalysis , Cobalt
20.
Ecotoxicol Environ Saf ; 272: 116048, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309233

ABSTRACT

A novel composite sulfur-manganese carbonate autotrophic denitrification (SMAD) system was developed to reduce sulfate production and provide pH buffer function while improving denitrification efficiency without external organics. The average removal efficiency of total nitrogen (TN) was 98.09% and 96.29%, and that of NO3--N was 99.53% and 97.77%, respectively, in the SMAD system with a hydraulic retention time (HRT) of 6 h and 3 h. They were significantly higher than that in the controls (quartz sand, manganese carbonate ore, and sulfur systems). The H+ produced by the sulfur autotrophic denitrification (SAD) process promoted the release of Mn2+ in the SMAD system. And this system had a stable pH with no accumulation of NO2--N. The decrease of sulfate and formation of Mn oxides through Mn2+ electron donation confirmed the presence of the manganese autotrophic denitrification (MAD) process in the SMAD system. Dominant functional bacteria in the SMAD system were Thiobacillus, Chlorobium, and Sulfurimonas, which were linked to nitrogen, sulfur, and manganese conversion and promoted denitrification. Meanwhile, Flavobacterium participating in Mn2+ oxidation was found only in the SMAD system. The SMAD system provided a new strategy for advanced tailwater treatment.


Subject(s)
Carbonates , Denitrification , Manganese , Nitrates , Nitrogen , Sulfates , Autotrophic Processes , Sulfur , Bioreactors/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...