Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 783
Filter
1.
Front Vet Sci ; 11: 1389728, 2024.
Article in English | MEDLINE | ID: mdl-38957801

ABSTRACT

Brucella BP26 proves to be a highly immunogenic antigen with excellent specificity in brucellosis detection. In China, the authorized use of the Bp26-deleted vaccine M5ΔBP26 for preventing small ruminant brucellosis highlights the importance of developing accurate detection methods targeting BP26, particularly for the diagnosis of differentiation between infected and vaccinated animals (DIVA). Using the traditional mouse hybridoma technique, we successfully obtained 12 monoclonal antibodies (mAbs) targeting BP26. The efficacy of these mAbs in detecting various animal brucellosis cases using the competitive ELISA method was evaluated. Among them, only the E10 mAb exhibited significant efficiency, being inhibited by 100, 97.62, and 100% of brucellosis-positive sera from cattle, small ruminants, and canines, respectively. The E10-based competitive enzyme-linked immunosorbent assay (cELISA) outperformed the BP26-based indirect enzyme-linked immunosorbent assay (iELISA) in accuracy, particularly for cattle and small ruminant brucellosis, with cELISA sensitivity reaching 97.62% compared to 64.29% for iELISA for small ruminants. Although cELISA showed slightly lower specificity than iELISA, it still maintained high accuracy in canine brucellosis detection. The epitope of mAb E10 was identified in the amino acid sequence QPIYVYPDDKNNLKEPTITGY, suggesting its potential as a diagnostic antigen for brucellosis. In conclusion, the E10-based cELISA presents an effective means of detecting animal brucellosis, particularly significant for DIVA diagnosis in China, where the BP26-mutant vaccine is widely used.

2.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957086

ABSTRACT

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Ferritins , Salmonella , Single-Domain Antibodies , Ferritins/immunology , Ferritins/chemistry , Ferritins/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Salmonella/immunology , Salmonella/genetics , Enzyme-Linked Immunosorbent Assay/methods , Limit of Detection , Antibody Affinity , Antibodies, Bacterial/immunology , Immunoassay/methods
3.
Pediatr Surg Int ; 40(1): 199, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019990

ABSTRACT

PURPOSE: This retrospective analysis aimed to assess the feasibility and safety of endoscopic retrograde cholangiopancreatography (ERCP) in pediatric patients by examining ERCP-related adverse events (AEs) occurring over a decade at a single center. METHODS: Pediatric patients under 18 years old who underwent ERCP at the Second Hospital of Hebei Medical University from 1/2013 to 11/2023 were included. ERCP-related AEs were defined according to ERCP-related adverse events: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Clinical data of patients experiencing ERCP-related AEs were obtained from electronic medical records for analysis. RESULTS: Over the past decade, a total of 76 pediatric patients underwent 113 ERCP procedures, including 26 patients who underwent repeat ERCP, totaling 63 procedures. There were 32 males and 44 females, with a median age of 13 years (range 3 years and 5 months-17 years and 9 months). Among all ERCP procedures, 14 (12.4%) were diagnostic and 99 (87.6%) were therapeutic, with a 100% success rate. 16 cases (14.2%) of ERCP-related AEs, all post-ERCP pancreatitis (PEP), were observed, while no other AEs defined by ESGE such as bleeding, perforation, cholangitis, cholecystitis, or sedation-related events were noted. Additionally, 23 cases (20.4%) of ERCP-related AEs not included in the ESGE definition were observed, including post-ERCP abdominal pain in 20 cases (17.7%), post-ERCP nausea and vomiting in 2 cases (1.8%), and unplanned reoperation in 1 case (0.9%). In the 26 cases of pediatric patients who underwent repeat ERCP, we observed that AEs occurred in 15 cases (57.7%) during their initial ERCP, which was much higher than the overall average level. CONCLUSIONS: Post-ERCP abdominal pain and PEP are the most common ERCP-related AEs in pediatric patients, while severe AEs such as bleeding and perforation are rare. The incidence of AEs after initial ERCP in pediatric patients who received repeat ERCP is higher than the overall average level. Based on our center's experience, we believe that ERCP can be safely performed in children over 3 years old with biliary and pancreatic diseases and obtain reliable clinical benefits. However, active monitoring and management of ERCP-related AEs are essential to improve the clinical outcomes of pediatric ERCP.


Subject(s)
Cholangiopancreatography, Endoscopic Retrograde , Humans , Male , Female , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Cholangiopancreatography, Endoscopic Retrograde/methods , Retrospective Studies , Child , Child, Preschool , Adolescent , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pancreatitis/etiology , Pancreatitis/epidemiology , Infant , Feasibility Studies
4.
Article in English | MEDLINE | ID: mdl-38982796

ABSTRACT

Lithium metal batteries (LMBs) using Li metals as anodes are conspicuous for high-energy-density energy-storage devices. However, the nonuniform deposition of Li+ ions leading to uncontrolled Li dendrite growth, which adversely affects electrochemical performance and safety, has impeded the practical application of lithium metal batteries (LMBs). Herein, PIM-1, a type of polymer of intrinsic microporosity (PIM), was utilized for surface engineering of conventional polyolefin separators. This process resulted in the formation of a continuous and homogeneous coating across the separator, facilitating uniform Li+ ion flux and deposition, and consequently reducing dendrite formation. Notably, the loading mass was quite low (0.6 g/m2) through the convenient dipping method. The intrinsic micropores and polar groups (cyano and ether groups) of PIM-1 greatly improved the electrolyte wettability and ionic conductivity of commercial polypropylene (PP) separators. And the PIM-1 coating guided Li+ flux to achieve uniform Li deposition. Moreover, the polar groups (cyano and ether groups) of PIM-1 are beneficial to the desolvation of Li+-solvates. As a result, the synergetic effect of uniform Li+ flux, desolvation, and enhanced mechanical strength of separators brings about considerable improvement in cycle life, suppression of Li dendrite, and Coulombic efficiency for LMBs. As this surface engineering is simple, relatively low-cost, and effective, this work provides fresh insights into separators for LMBs.

5.
Biosens Bioelectron ; 262: 116556, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38996596

ABSTRACT

The multiple-readout capability of multimodal detection enhances the flexibility, reliability, and accuracy of lateral flow immunoassay (LFIA). The conjugation of two different metal-organic frameworks (MOFs) as a new-generation composite material offers extraordinary opportunities for developing multimodal LFIA. It is anticipated to compensate limitations of traditional single colorimetric signal LFIA and improve the analysis performance. Herein, an ultra-bright fluorescent AIE-MOF was proposed and coupled with an in-situ growth of Prussian blue (PB) nanoparticles strategy to obtain a novel multimodal signal tracer (AIE-MOF@PB). Thereafter, it was successfully applied to develop the multimodal LFIA platform for the detection of nitrofurazone metabolites. The synergy of AIE-MOF and PB endows AIE-MOF@PB with superb water dispersibility, robust fluorescence emission, brilliant colorimetric signal, marvelous photothermal conversion, and enhanced antibody coupling efficiency, all of which facilitate a highly sensitive triple-readout LFIA platform. The detection sensitivity improved by at least 5-fold compared with the colloidal gold-based LFIA. This work not only inspires the rational design of aggregation-induced emission luminogens (AIEgen)-based complex materials but also highlights the promising potential in flexible point-of-care applications.

6.
Langmuir ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013789

ABSTRACT

Adsorption is a unit operation used in various fields, including the environmental, chemical, and pharmaceutical industries. Understanding the adsorption kinetics is crucial to designing efficient adsorption systems. However, existing empirical adsorption models are limited in providing insights into the mass transfer mechanisms. Additionally, the absence of a unified adsorption kinetic model hampers the effective comparison of different adsorption systems. Here, we viewed the adsorption as an "infectious process of adsorbates by adsorbents" akin to epidemiology. In epidemiology, individuals can be divided into susceptible, infected, and recovered compartments, ignoring the complexities of movement among individuals. Analogously, we have categorized the adsorbates as adsorbable, adsorbed, and removed compartments. Thus, we proposed a unified adsorption kinetic model (the monolayer-multilayer-adsorbable-adsorbed-removed model) that accommodates monolayer/multilayer adsorption. The model was designed to encompass diverse adsorption setups, including continuous and batch processes with fixed/dispersed adsorbents. The versatility and applicability of the model were demonstrated through validation using a diverse set of experimental data. This validation underscored its effectiveness in water/wastewater treatment, salt reduction, metal recovery, and drug purification. A MATLAB-based program for solving this model was made available to researchers for their utilization and further investigations. Overall, this study developed a versatile adsorption kinetic model that offers a comprehensive and unified understanding of adsorption kinetics across various applications.

7.
ACS Appl Mater Interfaces ; 16(26): 33347-33359, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913840

ABSTRACT

Currently, monitoring the ecological conditions of watercourses is overly unitary and inefficient and is burdened by high costs. A cost-effective, efficient, self-powered sensor for incorporating the Internet of Things (IoT) into the surveillance of riverine ecosystems is lacking. This manuscript introduces a device designed for energy harvesting and sensing through a triboelectric-electromagnetic generator (CX-TEHG). The CX-TEHG is composed of a wind-driven electromagnetic generator (F-EMG), a river-driven electromagnetic generator (W-EMG), a triboelectric nanogenerator for measuring flow velocity (W-TENG), and another triboelectric nanogenerator for gauging the speed of floodwater level rise (F-TENG). It employs planetary gears to achieve a 6-fold increase in speed, facilitating efficient multienergy collection from wind and river currents. CX-TEHG achieves a peak power output of 183 mW and a power density of 373.5 W/m3 under environmental conditions featuring a wind speed of 4 m/s and a flow velocity of 0.5 m/s. This study developed a cost-efficient signal acquisition system and a mechanism for information transmission via a 5G module. Alerts are issued on both upper-level computers and mobile devices for river flow velocities exceeding 2.8 m/s and water levels reaching specified locations; thus, an innovative solution for applying the Internet of Things in riverine ecological monitoring is presented.

8.
Anal Chem ; 96(26): 10714-10723, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913030

ABSTRACT

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.


Subject(s)
Alloys , Estriol , Gold , Metal Nanoparticles , Immunoassay/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Estriol/analysis , Alloys/chemistry , Animals , Colorimetry , Limit of Detection , Tannins/chemistry , Tannins/analysis
9.
ACS Appl Mater Interfaces ; 16(25): 32503-32515, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875477

ABSTRACT

Hierarchically structural particles (HSPs) are highly regarded as favorable nanomaterials for superhydrophobic coating due to their special multiscale structure and surface physicochemical properties. However, most of the superhydrophobic coatings constructed from HSPs are monofunctional, constraining their broader applications. Moreover, traditional methods for constructing HSPs mostly rely on complicated chemical routes and template removal. Herein, we propose an innovative strategy (one-pot method) for producing multifunctional hierarchical hybrid particles (HHPs). Polysilsesquioxane (PSQ), generated from hydrolysis condensation of methyltriethoxylsilane, is used as the sole stabilizer to anchor on the surface of styrene and short fluoroalkyl compound tridecafluorooctyl acrylate comonomers droplets, forming a mesoporous PSQ shell. Subsequently, the comonomers inside of the shell perform restricted polymerization to generate the HHP due to the driving of the mesoporous capillary force. The HHP is then mixed with waterborne polyurethane (WPU) to develop a robust nanocomposite coating (WPU-HHP). Through the deliberate design of the HHP components, the WPU-HHP coating has thermal insulation, photoluminescence properties, and the ability to achieve a wettability transition during abrasion. Our research has achieved the integration of multifunctionality in one waterborne hybrid system, broadening the application areas of nanocomposite coatings.

10.
Sci Total Environ ; 944: 173986, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876344

ABSTRACT

Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Fermentation , Hydrogen , Hydrogen/metabolism , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Bacteria/metabolism , Bacteria/drug effects
11.
J Mol Model ; 30(7): 224, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907749

ABSTRACT

CONTEXT: The thermal decomposition process of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/hydroxyl-terminated polybutadiene (HMX/HTPB) hybrid explosives and pure HMX explosives at different temperatures (2000 ~ 3500 K) was investigated using the reactive molecular dynamics method. This study aimed to analyze the effect of binders on the thermal decomposition of HMX at the atomic scale and reveal the thermal decomposition mechanism of HMX/HTPB. The results showed that the thermal decomposition process of the HMX molecule in the HMX/HTPB hybrid system involves a continuous denitration followed by the disintegration of the main ring. The HTPB chain will experience dehydrogenation, dehydroxylation, and chain fragmentation. Including HTPB in the hybrid system significantly increased the presence of H and OH radicals. These radicals then interacted with HMX and its decomposition products and produced more of the final products H2O and H2 in the HMX/HTPB hybrid system compared to pure HMX. Additionally, it was observed that the HTPB chain fragments attached to the HMX decomposition products prevented the formation of N2 and CO2. Furthermore, the activation energies (Ea) of the initial and intermediate decomposition stages of the HMX/HTPB hybrid system were 98.45 kJ mol-1 and 90.69 kJ mol-1, respectively. The results showed that the activation energies of the HMX/HTPB hybrid system are lower than the pure HMX system in these two stages. Consequently, HTPB will enhance HMX's thermal decomposition and decreased the system's insensitivity to heat stimuli. METHODS: The molecular dynamics simulation of the HMX/HTPB hybrid system was performed using the ReaxFF module in the LAMMPS software, and the ReaxFF/lg force field was used to describe the interatomic interactions as well as the chemical reactions.

12.
BMC Vet Res ; 20(1): 245, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849835

ABSTRACT

BACKGROUND: The utilization of live yeast (Saccharomyces cerevisiae, YE) in dairy cows is gaining traction in dairy production as a potential strategy to improve feed efficiency and milk yield. However, the effects of YE on dairy cow performance remain inconsistent across studies, leaving the underlying mechanisms unclear. Hence, the primary aim of this study was to investigate the impact of YE supplementation on lactation performance, ruminal microbiota composition and fermentation patterns, as well as serum antioxidant capacity and immune functions in dairy cows. RESULTS: Supplementation with YE (20 g/d/head) resulted in enhancements in dairy cow's dry matter intake (DMI) (P = 0.016), as well as increased yields of milk (P = 0.002) and its components, including solids (P = 0.003), fat (P = 0.014), protein (P = 0.002), and lactose (P = 0.001) yields. The addition of YE led to significant increases in the concentrations of ammonia nitrogen (NH3-N) (P = 0.023), acetate (P = 0.005), propionate (P = 0.025), valerate (P = 0.003), and total volatile fatty acids (VFAs) (P < 0.001) in rumen fermentation parameters. The analysis of 16s rRNA gene sequencing data revealed that the administration of YE resulted in a rise in the relative abundances of three primary genera including Ruminococcus_2 (P = 0.010), Rikenellaceae_RC9_gut_group (P = 0.009), and Ruminococcaceae_NK4A214_group (P = 0.054) at the genus level. Furthermore, this increase was accompanied with an enriched pathway related to amino acid metabolism. Additionally, enhanced serum antioxidative (P < 0.05) and immune functionalities (P < 0.05) were also observed in the YE group. CONCLUSIONS: In addition to improving milk performance, YE supplementation also induced changes in ruminal bacterial community composition and fermentation, while enhancing serum antioxidative and immunological responses during the mid-lactation stage. These findings suggest that YE may exert beneficial effects on both rumen and blood metabolism in mid-lactation dairy cows.


Subject(s)
Animal Feed , Antioxidants , Diet , Lactation , Rumen , Saccharomyces cerevisiae , Animals , Cattle , Female , Rumen/microbiology , Lactation/drug effects , Animal Feed/analysis , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Milk/chemistry , Fermentation , Animal Nutritional Physiological Phenomena
13.
Redox Biol ; 73: 103217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820984

ABSTRACT

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Subject(s)
Glucose Oxidase , Hyperglycemia , Nitric Oxide , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Animals , Glucose Oxidase/metabolism , Humans , Mice , Glucose/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
14.
Sci Total Environ ; 933: 173211, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38754511

ABSTRACT

In this study, ionizing radiation was used to induce the in-situ formation of highly dispersed nanosized cobalt oxide on the surface of graphene oxide (R-Co-GO), which was highly effective for activating PMS to degrade sulfamethoxazole (SMX). R-Co-GO had the highest catalytic activity when 150 µL cobalt chloride hexahydrate solution was used in the precursor, and the pseudo first-order kinetic constant of SMX degradation was 0.07 min-1 with high mineralization efficiency (63.1 %) and high PMS utilization efficiency. The sulfate radicals and high-valent cobalt oxo were mainly responsible for SMX degradation. Mechanism analysis showed that cobalt active site dominated in PMS activation, which was responsible for the formation of sulfate radicals and high-valent cobalt oxo; while the carbon framework contributed to the formation of singlet oxygen. The R-Co-GO-150 had good catalytic activity and stability in five cycling experiments, in which SMX was completely degraded and the concentration of dissolved Co was below 0.1 mg/L. In addition, the R-Co-GO-150/PMS system could also degrade phenol, bisphenol A, atrazine and nitrobenzene effectively, confirming its wide applicability. This study provided a facile method to uniformly disperse the metal oxides on the surface of carbon materials, and an effective system for the removal of emerging organic pollutants from the actual wastewater.

15.
Environ Pollut ; 353: 124150, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735466

ABSTRACT

In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.


Subject(s)
Benzo(a)pyrene , Colloids , Soil Pollutants , Soil , Benzo(a)pyrene/chemistry , Colloids/chemistry , Soil Pollutants/chemistry , Adsorption , Soil/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
16.
Environ Pollut ; 355: 124198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782161

ABSTRACT

Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.


Subject(s)
Carbon , Copper , Hydrogen Peroxide , Iron , Nanocomposites , Pefloxacin , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Copper/chemistry , Carbon/chemistry , Nanocomposites/chemistry , Pefloxacin/chemistry , Iron/chemistry , Nitrogen/chemistry , Metal-Organic Frameworks/chemistry
17.
Environ Sci Technol ; 58(23): 10149-10161, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38808456

ABSTRACT

Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.


Subject(s)
Biofilms , Denitrification , Nitrates , Phosphorus , Phosphorus/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Electron Transport , Iron , Sulfides
18.
J Phys Chem Lett ; 15(15): 4024-4030, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38577878

ABSTRACT

The nonaqueous electrolyte based on lithium hexafluorophosphate (LiPF6) is the dominant liquid electrolyte in lithium-ion batteries (LIBs). However, trace protic impurities, including H3O+, alcohols, and hydrofluoric acid (HF), can trigger a series of side reactions that lead to rapid capacity fading in high energy density LIBs. It is worth noting that this degradation process is highly dependent on the polarity of the solvents. In this work, a deep potential (DP) model is trained with a certain commercial electrolyte formula through a machine learning method. H3O+ is anchored with polar solvents, making it difficult to approach the PF6-, and suppressing the degradation process quickly at room temperature. Control experiments and simulations at different temperatures or concentrations are also performed to verify it. This work proposes a precise model to describe the solvation structure quantitatively and offers a new perspective on the degradation mechanism of PF6- in polar solvents.

19.
Blood ; 144(1): 84-98, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38579286

ABSTRACT

ABSTRACT: The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.


Subject(s)
Cell Cycle Proteins , Ferroptosis , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Animals , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Mice , Humans , Ferroptosis/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , GADD45 Proteins
20.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600745

ABSTRACT

With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...