Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Sci Total Environ ; 929: 172497, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38636875

Silicon (Si) biogeochemical cycling is beneficial for crop productivity and carbon (C) sequestration in agricultural ecosystem, thus offering a nonnegligible role in alleviating global warming and food crisis. Compared with other crops, rice plants have a greater quantity of phytolith production, because they are able to take up a lot of Si. However, it remains unclear on Si supply capacity of paddy soils across the world, general rice yield-increasing effect after Si fertilizer addition, and factors affecting phytolith production and potential of phytolith C sequestration in paddy fields. This study used a meta-analysis of >3500 data from 87 studies to investigate Si supply capacity of global paddy soils and elaborate the benefits of Si regarding rice productivity and phytolith C sequestration in paddy fields. Analytical results showed that the Si supply capacity of paddy soils was insufficient in the major rice producing countries/regions. Dealing with this predicament, Si fertilization was an effective strategy to supply plant-available Si to improve rice productivity. Our meta-analysis results further revealed that Si fertilization led to the average increasing rate of 36 % and 39 % in rice yield and biomass, which could reach up to 52 % and 46 % with the increasing doses of Si fertilizer, respectively. Especially, this strategy also improved the potential of phytolith C sequestration through the increased phytolith content and rice biomass, despite that this potential might have a decline in old paddy soils (≥ 7000 year) compared to in young paddy soils (≤ 1000 year) due to the slow migration and dissolution of phytoliths at millennial scale. Our findings thus indicate that a deep investigation on the benefits of Si in agroecosystem will further improve our understanding on regulating crop production and the potential of biogeochemical C sequestration within phytoliths in global cropland.


Agriculture , Carbon Sequestration , Fertilizers , Oryza , Silicon , Agriculture/methods , Soil/chemistry , Crops, Agricultural
3.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Article En | MEDLINE | ID: mdl-38436125

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Oryza , Soil , Carbon , China , Geography
4.
Sci Total Environ ; 919: 170823, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38342464

The tertiary industry, led by service sectors, usually have "clean" production processes and thus is ignored by current PM2.5 pollution mitigation strategies in China. Actually, the tertiary industry heavily relies on the supplies from its upstream industries, resulting in pollutant emissions and economic benefits transferring among different regions. With the application of the multiregional input-output (MRIO) model, our study explores the emission contribution from the tertiary industry's consumption activities in China and analyses the accompanying emission-economy relationship. We find that the production process of tertiary industry (with the sector Transportation excluded) contributes only ∼1 % of China's PM2.5-related emissions in 2017. However, its consumption-based emission contributions could increase to 11 %-17 %, among which >95 % are indirectly contributed. More than 40 % of tertiary industry consumption-based emissions, accompanied by 25 % of the consumption-based value added, are transferred via interprovincial trade. The proportion of transferred emissions even exceeds 50 % for the top 10 importers. The spatial pattern of value-added flows is nearly opposite to that of emission flows. Our results also reveal that among the 30 provinces and 870 interprovincial trading pairs, 6 provinces are experiencing environmental-economic win, 7 provinces are experiencing environmental-economic loss, and in detail 326 trading pairs are experiencing environmental-economic win or loss. To reduce the unexpected emissions and inequalities embodied in seemingly "clean" industries, consumption activities should be considered and strengthened in China's new-stage environmental policies.

5.
Sci Bull (Beijing) ; 69(4): 544-553, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38158290

Household consumption in China is associated with substantial PM2.5 pollution, through activities directly (i.e., fuel use) and/or indirectly (i.e., consumption of goods and services) causing pollutant emissions. Urban and rural households exhibit different consumption preferences and living areas, thus their contributions to and suffering from air pollution could differ. Assessing this contrast is crucial for comprehending the environmental impacts of the nation's ongoing urbanization process. Here we quantify Chinese urban and rural households' contributions to ambient PM2.5 pollution and the health risks they suffer from, by integrating economic, atmospheric, and health models and/or datasets. The national premature deaths related to long-term exposure to PM2.5 pollution contributed by total household consumption are estimated to be 1.1 million cases in 2015, among which 56% are urban households and 44% are rural households. For pollution contributed indirectly, urban households, especially in developed provinces, tend to bear lower mortality risks compared with the portions of deaths or pollution they contribute. The opposite results are true for direct pollution. With China's rapid urbanization process, without adequate reduction in emission intensity, the increased indirect pollution-associated premature deaths could largely offset that avoided by reduced direct pollution, and the indirect pollution-associated urban-rural inequalities might become severer. Developing pollution mitigation strategies from both production and consumption sides could help with reducing pollution-related mortality and associated urban-rural inequality.


Air Pollution , Environmental Pollutants , Humans , Particulate Matter/adverse effects , Air Pollution/adverse effects , Urbanization , China/epidemiology
6.
Drug Des Devel Ther ; 17: 1945-1957, 2023.
Article En | MEDLINE | ID: mdl-37408867

Purpose: This study aims to evaluate the effects of the intraoperative application of low-dose esketamine on postoperative neurocognitive dysfunction (PND) in elderly patients undergoing general anesthesia for gastrointestinal tumors. Methods: Sixty-eight elderly patients were randomly allocated to two groups: the esketamine group (group Es) (0.25 mg/kg loading, 0.125mg/kg/h infusion) and the control group (group C) (received normal saline). The primary outcome was the incidence of delayed neurocognitive recovery (DNR). The secondary outcomes were intraoperative blood loss, the total amount of fluid given during surgery, propofol and remifentanil consumption, cardiovascular adverse events, use of vasoactive drugs, operating and anesthesia time, the number of cases of sufentanil remedial analgesia, the incidence of postoperative delirium (POD), the intraoperative hemodynamics, bispectral index (BIS) value at 0, 1, 2 h after operation and numeric rating scale (NRS) pain scores within 3 d after surgery. Results: The incidence of DNR in group Es (16.13%) was lower than in group C (38.71%) (P <0.05). The intraoperative remifentanil dosage and the number of cases of dopamine used in group Es were lower than in group C (P <0.05). Compared with group C, DBP was higher at 3 min after intubation, and MAP was lower at 30 min after extubation in group Es (P<0.05). The incidence of hypotension and tachycardia in group Es was lower than in group C (P <0.05). The NRS pain score at 3 d after surgery in group Es was lower than in group C (P <0.05). Conclusion: Low-dose esketamine infusion reduced to some extent the incidence of DNR in elderly patients undergoing general anesthesia for gastrointestinal tumors, improved intraoperative hemodynamics and BIS value, decreased the incidence of cardiovascular adverse events and the intraoperative consumption of opioids, and relieved postoperative pain.


Delirium , Gastrointestinal Neoplasms , Humans , Aged , Remifentanil , Anesthesia, General/adverse effects , Pain, Postoperative , Gastrointestinal Neoplasms/surgery
7.
Chem Biol Drug Des ; 102(1): 168-176, 2023 07.
Article En | MEDLINE | ID: mdl-37211531

Rheumatoid arthritis (RA) is a severe inflammatory auto-immune disorder affecting millions of people across the globe. The current therapeutic options are not adequate to address the complications of RA. Therefore, the present study was conducted to elucidate the protective effect of lariciresinol, a lignan, against Complete Freund's adjuvant (CFA)-induced arthritis in rats. The results of the study showed that lariciresinol improves paw swelling and arthritic scores in rats as compared to CFA rats. Lariciresinol also showed a significant reduction in rheumatoid factor, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-17, and tissue inhibitor of metalloproteinases-3 level with a simultaneous increase in IL-4 level. The burden of oxidative stress was also reduced in CFA rats, as shown by reduced MDA levels and increased SOD and GPx after the administration of lariciresinol. In a Western blot analysis, lariciresinol showed a significant reduction of transforming growth factor-ß and nuclear factor-κB (NF-κB) protein levels in CFA rats. To understand the binding characteristic of lariciresinol with NF-κB, molecular docking analysis was conducted, which showed Larciresinol interacted with the active site of NF-κB. Our study demonstrated the significant protective effect of lariciresinol against RA via multi-target action.


Arthritis, Experimental , Arthritis, Rheumatoid , Lignans , Rats , Animals , NF-kappa B/metabolism , Freund's Adjuvant/adverse effects , Transforming Growth Factor beta , Molecular Docking Simulation , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Lignans/pharmacology , Lignans/therapeutic use , Transforming Growth Factors/adverse effects
8.
Sci Total Environ ; 879: 163191, 2023 Jun 25.
Article En | MEDLINE | ID: mdl-37003324

Pandemics greatly affect transportation, economic and household activities and their associated air pollutant emissions. In less affluent regions, household energy use is often the dominant pollution source and is sensitive to the affluence change caused by a persisting pandemic. Air quality studies on COVID-19 have shown declines in pollution levels over industrialized regions as an immediate response to pandemic-caused lockdown and weakened economy. Yet few have considered the response of residential emissions to altered household affluence and energy choice supplemented by social distancing. Here we quantify the potential effects of long-term pandemics on ambient fine particulate matter pollution (PM2.5) and resulting premature mortality worldwide, by comprehensively considering the changes in transportation, economic production and household energy use. We find that a persisting COVID-like pandemic would reduce the global gross domestic product by 10.9 % and premature mortality related to black carbon, primary organic aerosols and secondary inorganic aerosols by 9.5 %. The global mortality decline would reach 13.0 % had the response of residential emissions been excluded. Among the 13 aggregated regions worldwide, the least affluent regions exhibit the greatest fractional economic losses with no comparable magnitudes of mortality reduction. This is because their weakened affluence would cause switch to more polluting household energy types on top of longer stay-at-home time, largely offsetting the effect of reduced transportation and economic production. International financial, technological and vaccine aids could reduce such environmental inequality.


Air Pollutants , Air Pollution , COVID-19 , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Communicable Disease Control , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring
9.
Sci Total Environ ; 856(Pt 2): 159229, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36208770

Phytoliths are silica biomineralization products within plants and have been considered as a promising material to sequester carbon (C). However, there is considerable uncertainty and controversy regarding the C content in phytoliths due to the lack of detailed information on variation of C under different extraction procedures. Herein, we established a series of batch digestion experimental procedures coupled with analyses of phytoliths using Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy to divide phytoliths into three fractions. We then reported an approach for standardizing across hundreds of values found in the literature. Combining this standardized approach with C contents in phytoliths extracted from different digestion degrees, we revaluated the potential production rates of phytolith-occluded carbon (PhytOC) input globally in rice paddy fields. The results showed that the C content in recovered phytoliths exhibited a significantly fitting exponential relationship (p < 0.01) with digestion degrees and decreased from 30 to 75 g kg-1 under moderate digestion to <5 g kg-1 under over digestion. On a global scale, the production of total PhytOC in the world paddy fields reached up to (2.71 ± 0.85) × 106 t year-1. Therein, the contribution of sub-stable PhytOC fraction, stable PhytOC fraction, and recalcitrant PhytOC fraction was 63 %, 28 %, and 9 %, respectively. Our results imply that the estimation of phytolith C sequestration potential across the global paddy fields is associated with specific PhytOC fractions. Therefore, further determining the storage time limits of these specific PhytOC fractions after returning to soil will be vital for predicting terrestrial biogeochemical C sequestration potentials of phytoliths.


Carbon Sequestration , Oryza , Carbon/analysis , Soil/chemistry , Plants
10.
Front Immunol ; 13: 981784, 2022.
Article En | MEDLINE | ID: mdl-36405762

The dysfunctional immune response and multiple organ injury in sepsis is a recurrent theme impacting prognosis and mortality, while the lung is the first organ invaded by sepsis. To systematically elucidate the transcriptomic changes in the main constituent cells of sepsis-injured lung tissue, we applied single-cell RNA sequencing to the lung tissue samples from septic and control mice and created a comprehensive cellular landscape with 25044 cells, including 11317 immune and 13727 non-immune cells. Sepsis alters the composition of all cellular compartments, particularly neutrophils, monocytes, T cells, endothelial, and fibroblasts populations. Our study firstly provides a single-cell view of cellular changes in septic lung injury. Furthermore, by integrating bulk sequencing data and single-cell data with the Scissors-method, we identified the cell subpopulations that are most associated with septic lung injury phenotype. The phenotypic-related cell subpopulations identified by Scissors-method were consistent with the cell subpopulations with significant composition changes. The function analysis of the differentially expressed genes (DEGs) and the cell-cell interaction analysis further reveal the important role of these phenotype-related subpopulations in septic lung injury. Our research provides a rich resource for understanding cellular changes and provides insights into the contributions of specific cell types to the biological processes that take place during sepsis-induced lung injury.


Acute Lung Injury , Sepsis , Mice , Animals , Acute Lung Injury/genetics , Sepsis/complications , Sepsis/genetics , Lung , Phenotype , Neutrophils
11.
Cell Signal ; 97: 110398, 2022 09.
Article En | MEDLINE | ID: mdl-35811055

BACKGROUND: The inappropriate apoptosis of macrophages plays an important role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. As an endogenous apoptosis pathway, endoplasmic reticulum (ER) stress plays an important role in cell damage in patients with sepsis. Clarifying the ER stress response and its effect on macrophages during the development of sepsis is helpful to explore new strategies for the prevention and treatment of ALI in sepsis. METHODS: The mouse model and the RAW264.7 inflammation model were stimulated with LPS to establish in vivo and in vitro. We explored the effects of different expression levels of silent information regulator factor 2-related enzyme 1 (SIRT1) on the ER stress response and apoptosis of macrophages in the sepsis-related injury model. RESULTS: Our studies found that the increased expression of SIRT1 can significantly improve sepsis-related lung injury and relieve lung inflammation. SRT1720, a SIRT1 activator, can significantly inhibit the ER stress response of lung tissue and macrophages, inhibit the expression of pro-apoptotic proteins, promote the expression of anti-apoptotic proteins, and reduce macrophages of apoptosis. While the EX527, an inhibitor of SIRT1, had the opposite effect. CONCLUSION: SIRT1 can significantly improve sepsis-associated lung injury and LPS-induced macrophage apoptosis. This protective effect is closely related to its inhibition of the ER stress response via the PERK/eIF2-α/ATF4/CHOP pathway.


Acute Lung Injury , Sepsis , Acute Lung Injury/metabolism , Animals , Apoptosis , Endoplasmic Reticulum Stress , Lipopolysaccharides/pharmacology , Lung/metabolism , Macrophages/metabolism , Mice , Sepsis/complications , Sirtuin 1/metabolism
12.
Transpl Immunol ; 73: 101612, 2022 08.
Article En | MEDLINE | ID: mdl-35500847

BACKGROUND: Spinal cord injury (SCI) is one of the serious neurological diseases with high morbidity which may be treated with hematopoietic stem cell (HSC) transplants. Circular RNAs (circRNAs) play vital roles in SCI. The study aimed to reveal the function and mechanism of circRNA homeodomain interacting protein kinase 3 (HIPK3) in SCI. METHODS: SCI model in vitro was established by treating neuronal cells AGE1.HN with oxygen-glucose deprivation (OGD) and CoCl2. The levels of circHIPK3, miR-382-5p and dual specificity phosphatase 1 (DUSP1) were examined using quantitative real-time PCR (qRT-PCR) or western blot assay. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors (IL-6 and TNF-α). Cell proliferation and apoptosis were evaluated by 5'-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry. Caspase-3 Colorimetric Assay Kit was used to detect aaspase-3 activity. The interactions among circHIPK3, miR-382-5p and DUSP1 were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS: CircHIPK3 and DUSP1 were down-regulated, while miR-382-5p was up-regulated in OGD-induced AGE1.HN cells. Overexpression of circHIPK3 suppressed inflammatory response and cell apoptosis and promoted proliferation in OGD-induced AGE1.HN cells by sponging miR-382-5p. CircHIPK3 regulated DUSP1 expression by targeting miR-382-5p. MiR-382-5p inhibition hindered inflammatory response of IL-6 and TNF-α and neuronal apoptosis and promoted apoptosis via targeting DUSP1. CONCLUSION: CircHIPK3 overexpression alleviated OGD-induced AGE1.HN cell inflammatory response and neuronal apoptosis via regulating miR-382-5p/DUSP1 axis, indicating that circHIPK3 might be a promising therapeutic target for SCI.


MicroRNAs , Spinal Cord Injuries , Apoptosis/genetics , Dual Specificity Phosphatase 1 , Humans , Interleukin-6 , MicroRNAs/genetics , Spinal Cord Injuries/genetics , Tumor Necrosis Factor-alpha
13.
Comput Math Methods Med ; 2022: 6497754, 2022.
Article En | MEDLINE | ID: mdl-35450206

Objective: Image segmentation technology is applied to separate a single vertebra from the three-dimensional model of the spine, so as to separate a single vertebra image with smaller error, higher degree of automation, and better results. The objectives are to study the biomechanical characteristics of posterior short-segment pedicle screw fixation by three-dimensional finite element method, analyze the mechanical characteristics of posterior pedicle screw rod fixation system under different factors, and demonstrate the feasibility of its application in the treatment of lumbar fracture. Methods: The authors searched the database for articles about the treatment of lumbar spine fracture, screw rod internal fixation system, and its mechanical parameters. The threshold segmentation method based on region segmentation method was used to segment the image, and the three-dimensional finite element model was used to analyze the biomechanical characteristics of different posterior internal fixation for lumbar spine fracture. Results: The posterior pedicle internal fixation system for the treatment of multilevel spinal fractures is a mature surgical technique and has fewer postoperative complications. Transpedicle fixation is effective and reliable. It can effectively restore the coronal and sagittal curvature of the vertebral body and restore the stability of the spine better. But the choice of internal fixation method should be individualized based on fracture type, identification of critical and secondary injury sites, and stability assessment. Only after mastering the biomechanical characteristics of the posterior screw rod system for the treatment of lumbar fracture, selecting the appropriate method, and fixing the appropriate movement unit can the best fixation be achieved. Conclusion: Threshold method is the most direct and simple image segmentation method. The core technology of thresholding is the selection of threshold, which will affect the final segmentation effect. The most common segmentation method is to calculate the segmentation threshold by histogram. The threshold method has less computation and good segmentation effect for the image with large contrast between background and target. Posterior pedicle screw rod system internal fixation has the advantages of less trauma, good reduction, reliable fixation, and less complications. The design, placement angle and depth of various internal fixation systems, and the number of fixed segments all show different mechanical characteristics. As long as we master the above characteristics, choose the appropriate method and fix the appropriate motor unit, and we can get the best fixation; it can be used as an effective treatment for lumbar fracture.


Pedicle Screws , Spinal Fractures , Biomechanical Phenomena , Fracture Fixation, Internal/methods , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Thoracic Vertebrae/injuries , Thoracic Vertebrae/surgery
14.
Comput Math Methods Med ; 2021: 2638495, 2021.
Article En | MEDLINE | ID: mdl-34671416

OBJECTIVE: To explore the application value of magnetic resonance spectroscopy (MRS) and GSI-energy spectrum electronic computed tomography (CT) medical imaging based on the deep convolutional neural network (CNN) in the treatment of lumbar degenerative disease and osteoporosis. METHODS: There were 56 cases of suspected lumbar degenerative disease and osteoporosis. A group of 56 subjects were examined using 1.5 TMR spectrum (MRS) and dual-energy X-ray absorptiometry (DXA) to collect the lumbar L3 vertebral body fat ratio (FF) and L1~4 vertebral bone mineral density (BMD) value. We divided the subjects into 2 groups with T value -2.5 as the critical point. Set T value > -2.5 as the negative group and T value ≤ -2.5 as the positive group. Pearson's method is used for FF-MRS and BMD correlation analyses. A group of all patients underwent GSI-energy spectrum CT scan, and X-ray bone mineral density (DXA) test results (bone density per unit area) were used as the gold standard to analyze the diagnosis of osteoporosis by the GSI-energy spectrum CT scan method value. RESULTS: The differences in FF and BMD between the negative group and the positive group were statistically significant (P < 0.01), and there was a highly negative correlation between the average value of FF and BMD. 30 cases were diagnosed as osteoporosis by DXA. The accuracy of GSI-energy spectrum CT medical imaging in diagnosing osteoporosis is 89.30%. The GSI-energy spectrum CT diagnosis of osteoporosis and DXA examination results have good consistency. CONCLUSION: Based on the deep convolutional neural network (CNN) MRS technology, GSI-energy spectrum CT medical imaging is used in the clinical diagnosis and treatment of lumbar degenerative lesions and osteoporosis. It has a good advantage in assessing bone quality and has good consistency with DXA examination and has better application value high.


Bone Diseases/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/statistics & numerical data , Osteoporosis/diagnostic imaging , Absorptiometry, Photon/statistics & numerical data , Adipose Tissue/diagnostic imaging , Adult , Aged , Aged, 80 and over , Bone Cements , Bone Density , Bone Diseases/surgery , Bone Screws , Computational Biology , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Spectroscopy/statistics & numerical data , Male , Middle Aged , Neural Networks, Computer , Osteoporosis/surgery , Tomography, X-Ray Computed/statistics & numerical data
15.
Microb Pathog ; 148: 104468, 2020 Nov.
Article En | MEDLINE | ID: mdl-32866582

Sepsis-associated acute lung injury (ALI) is a clinically critical disease that carries a high mortality rate. The pathogenesis of sepsis-associated ALI has not yet been precisely elucidated and there is a lack of effective treatment. As a new endogenous docosahexaenoic acid (DHA)-derived lipid mediators, Maresin1 has a significant dual role of anti-inflammatory and promoting inflammation regression. In this study, we established the sepsis model by the cecal ligation and puncture method (CLP) to explore the effect of Maresin1 on sepsis-induced lung injury. We found that the intervention of Maresin1 could significantly attenuate the sepsis-induced inflammatory responses, characterized by the down-regulation of the level of IL-1ß, IL-6, TNF-α, MPO, etc. Maresin1 could also significantly decrease the number of neutrophils in lung tissue, thus improving the related lung injury indicators. Our experiment clarified that the protective effect of Maresin1 on sepsis-associated lung injury is closely related to its inhibition function of JAK2/STAT3 and MAPK/NF-κB signaling pathways. Our findings provide new research directions and therapeutic targets for sepsis-associated ALI.


Acute Lung Injury , Sepsis , Humans , Janus Kinase 2 , Lung/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , STAT3 Transcription Factor , Sepsis/complications , Tumor Necrosis Factor-alpha/metabolism
16.
Immunol Res ; 68(5): 280-288, 2020 10.
Article En | MEDLINE | ID: mdl-32845434

Previous reports have demonstrated that the newly identified lipid mediator protectin DX (PDX) could effectively attenuate multiple organ injuries in sepsis. The aim of our study was to clarify whether PDX could improve acute lung injury (ALI) induced by sepsis and elucidate the relevant potential mechanism. After inducing sepsis by the cecal ligation and puncture approach, mice were treated with a high or low dose of PDX. Pathological changes in the pulmonary tissue were analyzed by hematoxylin-eosin staining, and lung injury score was evaluated. Lung permeability and edema were assessed by lung wet/dry ratio, and protein and cellular load of the bronchoalveolar lavage fluid (BALF). Inflammatory cytokine levels in BALF were measured by ELISA and the expression of PPARγ in the lung tissue was analyzed by immunoblotting. The results suggested that PDX could diminish the inflammatory response in lung tissue after sepsis by upregulating PPARγ and inhibiting the phosphorylation and activation of NF-κB p65. PDX treatment lowered the levels of pro-inflammation cytokines IL-1ß, IL-6, TNF-α, and MCP-1, and the levels of anti-inflammatory cytokine IL-10 was increased in the BALF. It also improved lung permeability and reduced lung injury. Furthermore, the protective effect of PDX on lung tissue could be reversed by GW9662, a specific PPAR-γ antagonist. Taken together, our study indicated that PDX could ameliorate the inflammatory response in ALI by activating the PPARγ/NF-κB pathway in a mouse model of sepsis.


Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/administration & dosage , Docosahexaenoic Acids/administration & dosage , PPAR gamma/metabolism , Sepsis/drug therapy , Acute Lung Injury/diagnosis , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Anilides/administration & dosage , Animals , Bronchoalveolar Lavage Fluid/immunology , Cytokines/analysis , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/diagnosis , Inflammation/drug therapy , Inflammation/immunology , Inflammation Mediators/analysis , Inflammation Mediators/metabolism , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice , PPAR gamma/antagonists & inhibitors , Sepsis/complications , Sepsis/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Transcription Factor RelA/metabolism
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(7): 873-876, 2020 Jul.
Article Zh | MEDLINE | ID: mdl-32788028

Inflammatory response is an effective host defense mechanism to eliminate pathogens at the site of infection. The regression phase of inflammation mainly maintains the stable environment in tissues. Pro-inflammatory regression mediators (SPMs) are endogenous anti-inflammatory molecules, which play an important role in reducing excessive tissue damage and chronic inflammation. This paper reviews the interaction between SPMs and immune cells in inflammatory sites. By reviewing the relevant literature, it was found that SPMs regulate the components of innate and adaptive immune system, including neutrophils, macrophages, innate lymphocytes, natural killer cells and T cells.


Inflammation , Macrophages , Humans , Immunity, Innate , Inflammation Mediators , Neutrophils , T-Lymphocytes
18.
Life Sci ; 254: 117773, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32418896

The disturbance of the immune homeostasis caused by infection is decisive for multiple organ dysfunction caused by sepsis. Both the th17 cell and the regulatory cell(Tregs) are important components of the immune system and play a crucial role in maintaining immune homeostasis. In this study, we explored the effect of Maresin1, an emerging specific pro-inflammatory mediator, on the balance of Th17/Treg in sepsis, and investigated the underlying mechanism. We used the male C57BL/6 mice to establish the model of sepsis-induced lung injury by cecal ligation and puncture to verify the protective effect of Maresin1. Our study showed that Maresin1 could significantly inhibit the excessive inflammatory response and promote the inflammation regression in the process of sepsis-induced acute lung injury, thereby reducing lung damage and improving lung function. These effects were accompanied with the regulation of Maresin1 on the Th17/Treg balance in the early stages of sepsis. We demonstrated that Maresin1 has a certain effect on increasing the number of Treg and decreasing the number of Th17 cells in the early stages of sepsis, which is consistent with its effect on STAT3/RORγt and STAT5/Foxp3 signal pathways. Our study elucidated for the first time the relationship between Maresin1 and Th17/Treg balance in sepsis-induced acute lung injury.


Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Docosahexaenoic Acids/pharmacology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Animals , Cytokines/immunology , Disease Models, Animal , Forkhead Transcription Factors/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Random Allocation , STAT3 Transcription Factor/immunology , STAT5 Transcription Factor/immunology , Sepsis/drug therapy , Sepsis/immunology , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
19.
Med Sci Monit ; 26: e918523, 2020 Jan 29.
Article En | MEDLINE | ID: mdl-31995551

BACKGROUND Intrathecal dexmedetomidine (DEX) can improve the blockade of spinal anesthesia, but there is no clear conclusion on whether it has an effect on the fetus during cesarean section. Our meta-analysis evaluated the safety and efficacy of intrathecal DEX in cesarean delivery. MATERIAL AND METHODS We searched Cochrane, Embase, PubMed, and CBM for eligible studies, and used the Revised Cochrane Risk of Bias Tool (RoB 2.0) to assess the risk of bias of each study. RevMan was used for statistical analyses. We have registered this meta-analysis on PROSPERO (CRD42019120995). RESULTS The meta-analysis included 10 RCTs, but only 5 were prospectively registered. The results of preregistration studies, including the 1- or 5-min Apgar score (mean difference [MD], -0.03; 95% confidence intervals [CI], -0.16 to 0.10; P=0.64 or MD, 0.00; 95% CI, -0.09 to 0.09; P=1), the umbilical arterial oxygen or carbon dioxide partial pressure (MD, 0.90; 95% CI, -4.92 to 6.72; P=0.76 or MD, 1.20; 95% CI, -2.06 to 4.46; P=0.47), and the cord blood pH (MD, -0.01; 95% CI, -0.05 to 0.03; P=0.72), showed that intrathecal DEX had no significant difference in neonatal outcomes compared with placebo. In maternal outcomes, intrathecal DEX significantly prolonged postoperative pain-free period and reduced the incidence of postoperative shivering, which did not increase spinal anesthesia-associated adverse effects. CONCLUSIONS Intrathecal DEX is safe for the fetus during cesarean section and can improve the blockade effects of spinal anesthesia on puerperae.


Anesthesia, Spinal , Cesarean Section , Fetus/physiology , Apgar Score , Dexmedetomidine/adverse effects , Dexmedetomidine/pharmacology , Female , Fetus/drug effects , Humans , Infant, Newborn , Postoperative Period , Pregnancy , Pregnancy Outcome , Publication Bias , Risk , Shivering/drug effects , Visual Analog Scale
20.
Front Pharmacol ; 10: 1323, 2019.
Article En | MEDLINE | ID: mdl-31787899

Acute kidney injury (AKI) is one of the most common and serious complications of sepsis in which the inflammatory cascade plays a crucial role. There is now increasing evidence that lipid mediators derived from the omega-3 fatty acid docosahexaenoic acid (DHA) have potent anti-inflammatory effects that promote the timely regression of acute inflammation. In this study, we investigated the protective effects and molecular mechanism of a novel DHA-derived lipid mediator Maresin 1 (MaR1) on AKI in septic mice. The cecal ligation and puncture (CLP) was used to establish a sepsis mice model. As a result, we found that MaR1 significantly increased the 7-day survival rate of septic mice and the anti-inflammatory factor IL-10 while reducing bacterial load and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß). In addition, MaR1 dose dependently reduced renal injury scores and serum creatinine and urea nitrogen levels in septic mice while inhibiting renal neutrophil infiltration and myeloperoxidase (MPO) activity. In terms of signaling pathway, we found that MaR1 inhibits the expression of phosphorylated p65, Stat3, JNK, ERK, and p38 and significantly reduces nuclear translocation of p65. In conclusion, our results indicate that MaR1 is able to reduce neutrophil infiltration and inhibit nuclear factor-kappa B/signal transducer and activator of transcriptor 3/mitogen-activated protein kinase (NF-κB/STAT3/MAPK) activity and regulate inflammatory cytokine level to inhibit inflammatory response and thereby weaken sepsis-associated AKI in mice.

...