Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Heliyon ; 10(12): e33438, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027452

ABSTRACT

Background: Pediatric pneumonia presents a significant global health challenge, particularly in low- and middle-income countries. This study aimed to investigate the incidence of pneumonia in preschool children in Urumqi and its association with indoor environmental factors. Methods: This case-control study collected data from December 2018 to December 2019 on 1522 preschool children in Urumqi (779 boys and 743 girls) who were diagnosed with pneumonia by a physician. A control group of children who had never had pneumonia was matched in a 1:1 ratio based on gender, age, and ethnicity. Using questionnaires, data were collected on children's general characteristics, passive smoking, types of housing, flooring materials, and indoor dampness, analyzing potential factors associated with the incidence of pediatric pneumonia. Results: Multivariate analysis revealed that cesarean birth (odds ratio [OR] = 1.27; 95 % confidence interval [95%CI] = 1.08-1.48), being an only child (OR = 1.32; 95%CI = 1.13-1.55), antibiotic treatment during the first year of life (OR = 2.51; 95%CI = 1.98-3.19), passive smoking during the mother's pregnancy (OR = 1.62; 95%CI = 1.24-2.13), living in multi-family apartment housing (OR = 1.64; 95%CI = 1.28-2.10) and other types of housing (OR = 1.47; 95%CI = 1.09-1.99), laminate flooring (OR = 1.31; 95%CI = 1.01-1.72), and tile/stone/cement flooring flooring (OR = 1.31; 95%CI = 1.06-1.61), and dampness in dwelling (during first year of mother's pregnancy) (OR = 1.30; 95%CI = 1.04-1.63) were risk factors for pediatric pneumonia. The use of fresh air filtration systems in children's residences (OR = 0.66; 95%CI = 0.50-0.86) was identified as a protective factor. Conclusion: This study underscores the importance of indoor environmental factors in the prevention of pediatric pneumonia. Public health strategies should consider these factors to reduce the incidence of pneumonia in children. Future research needs to be conducted over a broader geographical range and consider a more comprehensive range of factors influencing pediatric pneumonia.

2.
Mol Neurobiol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052185

ABSTRACT

Alzheimer's disease (AD) is a leading neurodegenerative disorder with substantial impacts on cognition and behavior. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, has been used to treat various neuropsychiatric disorders, but its efficacy in AD has not been thoroughly investigated. This study examines the neuroprotective effects of rTMS in the 5xFAD mouse model of AD, with a particular focus on its modulation of GABAergic neuronal activity via the GABRG2 and SNAP25 proteins. Transcriptomic sequencing of rTMS-treated 5xFAD mice revealed 32 genes influenced by the treatment, among which GABRG2 was identified as a critical modulatory target. Electrophysiological assessments, including whole-cell patch clamp recordings from frontal cortex neurons, demonstrated significant alterations in inhibitory synaptic currents following rTMS. Subsequent experiments involved sh-GABRG2 transduction combined with rTMS treatment (20Hz, 14 days), examining behavioral responses, GABAergic neuron functionality, cortical GABA expression, cerebrospinal fluid GABA concentrations, ß-amyloid accumulation, and pro-inflammatory cytokine levels. The results indicated notable improvements in behavioral performance, enhanced functionality of GABAergic neurons, and reductions in ß-amyloid deposition and neuroinflammation after rTMS treatment. Further analysis revealed that SNAP25 overexpression could counteract the negative effects of GABRG2 silencing, highlighting the crucial role of SNAP25 downstream of GABRG2 in mediating rTMS's therapeutic effects in AD. This research highlights rTMS's potential to modulate synaptic and vesicular transport mechanisms, offering a promising avenue for ameliorating symptoms of AD through neuroprotective pathways.

3.
Mult Scler Relat Disord ; 88: 105753, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996710

ABSTRACT

BACKGROUND: There is growing evidence supporting that vascular abnormalities contribute to multiple sclerosis (MS), and retinal microvasculature functions as a visible window to observe vessels. We hypothesized that retinal vascular curve tortuosity is associated with MS, which this study aims to address. METHODS: Participants from the UK Biobank with complete clinical records and gradable fundus photos were included in the study. Arteriolar and venular curve tortuosity and vessel area density are quantified automatically using a deep learning system. Individuals with MS were matched to healthy controls using propensity score matching (PSM). Conditional logistic regression was used to investigate the association between retinal vascular characteristics and MS. We also used a receiver operating characteristic (ROC) curve to assess the diagnostic performance of MS. RESULTS: Venular curve tortuosity (VCT) was found to be significantly associated with MS. And patients with multiple sclerosis were probable to have lower VCT than the non-MS group (OR = 0.22 [95 % CI, 0.05 to 0.92], P < 0.05). CONCLUSIONS: Our study reveals a significant association between vessel curve tortuosity and MS. The lower curve tortuosity of the retinal venular network may indicate a higher risk of incident multiple sclerosis.


Subject(s)
Biological Specimen Banks , Multiple Sclerosis , Retinal Vessels , Humans , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/epidemiology , Multiple Sclerosis/diagnosis , Female , Male , Middle Aged , United Kingdom , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Cross-Sectional Studies , Adult , Microvessels/pathology , Microvessels/diagnostic imaging , Microvessels/physiopathology , Aged , Deep Learning , UK Biobank
4.
Biochem Biophys Res Commun ; 727: 150316, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38959732

ABSTRACT

Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.


Subject(s)
Autophagy , Diabetes Mellitus, Type 2 , Exosomes , Macrophages , Mice, Inbred C57BL , Osseointegration , Titanium , Tumor Necrosis Factor-alpha , Titanium/chemistry , Titanium/pharmacology , Animals , Exosomes/metabolism , Autophagy/drug effects , Macrophages/metabolism , Macrophages/drug effects , Osseointegration/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Mice , Diabetes Mellitus, Type 2/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cell Polarity/drug effects , Osteogenesis/drug effects , Macrophage Activation/drug effects , Diabetes Mellitus, Experimental/metabolism
5.
Environ Sci Pollut Res Int ; 31(37): 49837-49854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085692

ABSTRACT

In order to study the ecological and atmospheric recovery of the Hexi Corridor region, this paper analyzes the migration changes of land use characteristics and utilizes multivariate data and BenMAP-CE software to study the pollution characteristics of ozone and its precursors and the impact on human health in the Hexi Corridor region. The results showed that the increase of cultivated land area in the Hexi Corridor mainly originated from grassland. The MDA8-O3 concentrations met the primary and secondary standards of the Ambient Air Quality Standards on 43% and 99% of the days, respectively. NO2 showed a negative weekend effect with O3, and HCHO was opposite to it. Temperature, barometric pressure, and vegetation were highly correlated with O3-NO2-HCHO. Ozone pollution in the study area caused about 60% of all-cause premature deaths due to cardiovascular diseases. The study suggests that controlling exogenous transport in Wuwei City during the high ozone period (except August) is mainly dominated by the west and northwest, and that synergistic management of VOCs and NOx emissions can reduce O3 pollution and, consequently, reduce the risk to human health.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Ozone , Ozone/analysis , Humans , Volatile Organic Compounds/analysis , China , Nitrogen Oxides/analysis
6.
Geriatr Nurs ; 58: 488-497, 2024.
Article in English | MEDLINE | ID: mdl-38970917

ABSTRACT

BACKGROUND: To systematically assess the association between cognitive frailty (CF) and malnutrition in older adults. METHODS: 8 databases were retrieved up until April 2023 by two reviewers in dependently, and meta-analysis was performed by Stata 16.0 software. RESULTS: A total of 19 studies were meta-analyzed to assess the relationship between CF and malnutrition in older adults. The pooled prevalence of CF from 17 studies was 23 %, and the pooled prevalence of malnutrition among patients with CF from 12 studies was 57 %. Data from 13 studies on the association between CF and malnutrition unveiled a high risk of CF in older adults with malnutrition (OR = 3.77, 95 % CI: 2.49-5.69). CONCLUSION: The prevalence of malnutrition is high in older adults with CF, and there is a significant delve into targeted treatment and preventive measures to ameliorate the quality of life of older adults.


Subject(s)
Malnutrition , Humans , Malnutrition/epidemiology , Aged , Prevalence , Frailty/complications , Frail Elderly/psychology , Quality of Life , Geriatric Assessment , Cognitive Dysfunction/epidemiology
7.
ACS Nano ; 18(26): 16726-16742, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888383

ABSTRACT

Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.


Subject(s)
Anti-Bacterial Agents , Carbon , Kupffer Cells , Sepsis , Animals , Mice , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sepsis/drug therapy , Sepsis/microbiology , Sepsis/pathology , Carbon/chemistry , Carbon/pharmacology , Apoptosis/drug effects , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Male , Quantum Dots/chemistry , Copper/chemistry , Copper/pharmacology , Microbial Sensitivity Tests
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 577-583, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932545

ABSTRACT

Red blood cells are destroyed when the shear stress in the blood pump exceeds a threshold, which in turn triggers hemolysis in the patient. The impeller design of centrifugal blood pumps significantly influences the hydraulic characteristics and hemolytic properties of these devices. Based on this premise, the present study employs a multiphase flow approach to numerically simulate centrifugal blood pumps, investigating the performance of pumps with varying numbers of blades and blade deflection angles. This analysis encompassed the examination of flow field characteristics, hydraulic performance, and hemolytic potential. Numerical results indicated that the concentration of red blood cells and elevated shear stresses primarily occurred at the impeller and volute tongue, which drastically increased the risk of hemolysis in these areas. It was found that increasing the number of blades within a certain range enhanced the hydraulic performance of the pump but also raised the potential for hemolysis. Moreover, augmenting the blade deflection angle could improve the hemolytic performance, particularly in pumps with a higher number of blades. The findings from this study can provide valuable insights for the structural improvement and performance enhancement of centrifugal blood pumps.


Subject(s)
Equipment Design , Heart-Assist Devices , Hemolysis , Stress, Mechanical , Humans , Heart-Assist Devices/adverse effects , Erythrocytes/cytology , Centrifugation , Computer Simulation
9.
Appl Opt ; 63(14): 4006-4013, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38856365

ABSTRACT

Aiming at challenges such as low efficiency, high missing rate, difficulty in identifying contour defects, and difficulty in extracting tiny defects, a defect detection method for extracting micro and macro scale defects is proposed in this paper. After preprocessing the image, contour detection is performed to identify the contours. Subsequently, a contour complementation algorithm is employed to complement the unclosed contours. Finally, the detection of micro scale defects is conducted based on the grayscale variation of the center of the micro scale defects. The experimental results show that compared with the traditional method, the proposed algorithm can accurately detect the bubble defects of different scales in silicon carbide castings and can identify the complex defects better.

10.
Huan Jing Ke Xue ; 45(6): 3725-3733, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897792

ABSTRACT

Organic fertilizer substitution has been promoted as a weight loss, efficient, and diversified fertilizer substitution technology in agricultural production. However, there is a lack of comprehensive assessment of the impact of organic fertilizers on N2O and NO emissions from orchards. In this study, N2O and NO emissions from peach orchards were observed annually using static dark box-gas chromatography to compare the effects of chemical fertilizer application alone and partial replacement of chemical fertilizer treatment on NO emissions from peach orchards. The results showed that the partial replacement of chemical fertilizers with organic fertilizers reduced the total N2O and NO emissions from peach orchards by 15.0 % and 9.4 %, respectively. The N2O and NO emission factors were reduced by 21.3 % and 21.1 %. The mineral N content of the soil in the organic fertilizer treatment was lower than that in the chemical fertilizer treatment alone. The organic fertilizer treatment increased the contribution of AOA to nitrification and decreased the contribution of AOB, thus reducing N2O and NO from nitrification. In addition, the results of the dual isotope mixing model[δ18O(N2O/H2O) vs. δ15NSP] indicated that the bacterial denitrification/nitrifying bacterial denitrification (bD/nD) process served as the primary pathway for N2O emissions in peach orchards. Partial substitution with organic fertilizers enhanced soil denitrification, resulting in larger reductions in the amounts of N2O and NO. Therefore, partial substitution of organic fertilizer is a viable measure to mitigate nitrogen oxide emissions from orchards and to achieve green and low-carbon development in agriculture.

11.
J Stroke Cerebrovasc Dis ; 33(8): 107805, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839025

ABSTRACT

BACKGROUND AND OBJECTIVE: Our study aimed to evaluate the associations between platelet count (PC) and in-hospital outcomes for patients with stroke after rt-PA intravenous thrombolysis. METHODS: We identified patients who had been hospitalized with a primary diagnosis of stroke and had received rt-PA intravenous thrombolysis from June 2015 to July 2019 at participating hospitals in the Chinese Stroke Center Alliance. PC measured before intravenous thrombolysis was categorized into the following four groups: severe thrombocytopenia (PC < 100 × 109/L), mild thrombocytopenia (100 ≤ PC < 150 × 109/L), normal PC (150 ≤ PC ≤ 450 × 109/L), and thrombocythemia (PC > 450 × 109/L). Outcomes were determined from clinical data collected during hospitalization. The primary clinical outcome was symptomatic intracranial hemorrhage (sICH). Secondary outcomes were mortality, bleeding events, gastrointestinal (GI) hemorrhage, and in-hospital stroke recurrence. We used multivariate logistic regression models to evaluate the associations between PC and outcomes. RESULTS: We included 44,882 individuals with a median age of 66 years, of whom 34.7 % were female, 951 (2.1 %) had severe thrombocytopenia, 7218 (16.1 %) had mild thrombocytopenia, 36,522 (81.4 %) had a normal PC, and 191 (0.4 %) had thrombocythemia. Both severe and mild thrombocytopenia groups had higher risks of bleeding events (adjusted OR 1.30; 95 % CI,1.01-1.67; p = 0.045; adjusted OR 1.32; 95 % CI,1.19-1.46; p < 0.001) and sICH (adjusted OR 1.48;95 % CI,1.13-1.94; p = 0.005; adjusted OR 1.43;95 % CI,1.27-1.60; p < 0.001) than the normal PC group. Patients with 100 ≤ PC < 150 × 109/L also had a higher risk of in-hospital stroke recurrence (adjusted OR 1.12; 95 % CI,1.02-1.22; p = 0.02). CONCLUSIONS: Intravenous thrombolysis brings a high risk of sICH given PC < 150 × 109/L, especially PC < 100 × 109/L. It indicated that PC < 100 × 109/L is a reasonable contraindication to thrombolysis.


Subject(s)
Fibrinolytic Agents , Ischemic Stroke , Registries , Thrombocytopenia , Thrombolytic Therapy , Humans , Female , Male , Aged , Thrombocytopenia/diagnosis , Thrombocytopenia/chemically induced , Middle Aged , Ischemic Stroke/diagnosis , Ischemic Stroke/drug therapy , Ischemic Stroke/mortality , Treatment Outcome , China/epidemiology , Platelet Count , Thrombolytic Therapy/adverse effects , Thrombolytic Therapy/mortality , Risk Factors , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Time Factors , Risk Assessment , Recurrence , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/adverse effects , Retrospective Studies , Aged, 80 and over , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/etiology , Intracranial Hemorrhages/mortality , Hospital Mortality , Administration, Intravenous , Gastrointestinal Hemorrhage/mortality , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/diagnosis
12.
Front Aging Neurosci ; 16: 1390915, 2024.
Article in English | MEDLINE | ID: mdl-38752208

ABSTRACT

Background: Recent studies show testosterone (T) deficiency worsens cognitive impairment in Alzheimer's disease (AD) patients. Mitochondrial dysfunction, as an early event of AD, is becoming critical hallmark of AD pathogenesis. However, currently, whether T deficiency exacerbates mitochondrial dysfunction of men with AD remains unclear. Objective: The purpose of this study is to explore the effects of T deficiency on mitochondrial dysfunction of male AD mouse models and its potential mechanisms. Methods: Alzheimer's disease animal model with T deficiency was performed by castration to 3-month-old male APP/PS1 mice. Hippocampal mitochondrial function of mice was analyzed by spectrophotometry and flow cytometry. The gene expression levels related to mitochondrial biogenesis and mitochondrial dynamics were determined through quantitative real-time PCR (qPCR) and western blot analysis. SH-SY5Y cells treated with flutamide, T and/or H2O2 were processed for analyzing the potential mechanisms of T on mitochondrial dysfunction. Results: Testosterone deficiency significantly aggravated the cognitive deficits and hippocampal pathologic damage of male APP/PS1 mice. These effects were consistent with exacerbated mitochondrial dysfunction by gonadectomy to male APP/PS1 mice, reflected by further increase in oxidative damage and decrease in mitochondrial membrane potential, complex IV activity and ATP levels. More importantly, T deficiency induced the exacerbation of compromised mitochondrial homeostasis in male APP/PS1 mice by exerting detrimental effects on mitochondrial biogenesis and mitochondrial dynamics at mRNA and protein level, leading to more defective mitochondria accumulated in the hippocampus. In vitro studies using SH-SY5Y cells validated T's protective effects on the H2O2-induced mitochondrial dysfunction, mitochondrial biogenesis impairment, and mitochondrial dynamics imbalance. Administering androgen receptor (AR) antagonist flutamide weakened the beneficial effects of T pretreatment on H2O2-treated SH-SY5Y cells, demonstrating a critical role of classical AR pathway in maintaining mitochondrial function. Conclusion: Testosterone deficiency exacerbates hippocampal mitochondrial dysfunction of male APP/PS1 mice by accumulating more defective mitochondria. Thus, appropriate T levels in the early stage of AD might be beneficial in delaying AD pathology by improving mitochondrial biogenesis and mitochondrial dynamics.

13.
Neuropharmacology ; 255: 110006, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763325

ABSTRACT

Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aß deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Edaravone , Membrane Glycoproteins , Receptors, Immunologic , Toll-Like Receptor 4 , Up-Regulation , Animals , Toll-Like Receptor 4/metabolism , Mice , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Edaravone/pharmacology , Edaravone/therapeutic use , Up-Regulation/drug effects , Mice, Transgenic , Neuroprotective Agents/pharmacology , MAP Kinase Signaling System/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Inbred C57BL , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Presenilin-1/genetics
14.
Adv Colloid Interface Sci ; 330: 103198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820884

ABSTRACT

Particle-stabilized technique for fabricating foam ceramics was developed in 2006. Porous ceramics with porosity over 95% can be prepared by this newly developed method. This foaming technique was derived from the principle of Pickering foam to a large extent. The high internal phase volume, narrow distribution of pore size as well as the structural stability of the Pickering system enable the final ceramic products to realize their functionality in a variety of applications. However, the interfacial aspect of the foaming system determines the final product in many ways, which brings this novel method details to explore and possibilities to challenge. The current review introduces the particle-stabilized method combining with colloid and surface science since particles are the building block of ceramic materials. The history of this newly invented method was mentioned at first, followed by foam ceramic products prepared by this foaming technique combining with corresponding mechanism. Some representative applications involving ceramic materials made by particle-stabilized method were discussed. At last, we conclude the overall article and put forward some outlooks and challenges about the future direction of this unique foaming technique.

15.
PeerJ ; 12: e17223, 2024.
Article in English | MEDLINE | ID: mdl-38618573

ABSTRACT

Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.


Subject(s)
Agriculture , Humans , Animals , Spodoptera , Seasons , Population Dynamics , China/epidemiology
16.
Water Sci Technol ; 89(7): 1816-1830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619905

ABSTRACT

Accurate calculation of flow discharge for sluice gates is essential in irrigation, water supply, and structure safety. The measurement of discharge with the requirement of distinguishing flow regimes is not conducive to application. In this study, a novel approach that considers both free and submerged flow was proposed. The energy-momentum method was employed to derive the coefficient of discharge. Subsequently, the discharge coefficient was determined through the experiment which was performed on the physical model of a vertical sluice gate with a broad-crested weir. Feature engineering, incorporating dimensional analysis, feature construction, and correlation-based selection were performed. The best subset regression method was employed to develop regression equations of the discharge coefficient with the generated features. The derived formula was applied to compute the discharge coefficient in the vertical sluice gate and determine the flow discharge. The accuracy of adopted method was assessed by comparing it with recent studies on submerged flow, and the results demonstrate that the developed approach achieves a high level of accuracy in calculating flow discharge. The coefficient of determination for the calculated flow rate is 0.993, and the root mean square percentage error is 5.04%.


Subject(s)
Water Supply
17.
Chem Biodivers ; 21(5): e202400210, 2024 May.
Article in English | MEDLINE | ID: mdl-38433548

ABSTRACT

Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.


Subject(s)
Ellipticines , Ellipticines/pharmacology , Ellipticines/chemistry , Humans , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Molecular Structure , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
18.
Int J Biol Macromol ; 266(Pt 1): 131197, 2024 May.
Article in English | MEDLINE | ID: mdl-38554913

ABSTRACT

Bombyx mori triose-phosphate transporter protein (BmTPT) is a member of the solute carrier (SLC) family. Its main function is to transport triose phosphate between intracellular and extracellular. In this study, BmTPT was cloned and characterised from the fat body of the silkworm Bombyx mori, resulting in an open reading frame (ORF) with a full length of 936 bp, which can encode 311 amino acid residues and has eight transmembrane structural domains. BmTPT was distributed throughout the cell and deposited the most in the nucleus, and is expressed in all tissues of Bombyx mori. Bombyx mori nucleopolyhedrovirus (BmNPV) infection significantly up-regulated BmTPT expression in immune tissue fat bodies. In addition, overexpression of BmTPT significantly inhibited BmNPV infection and markedly reduced the expression of enzymes related to the cellular glycolytic pathway; on the contrary, down-regulation of BmTPT expression by RNA interference resulted in robust replication of BmNPV and a significant increase in the expression of enzymes related to the cellular glycolytic pathway. This is the first report that BmTPT has antiviral effect in silkworm, and also could result in a lack of energy and raw materials for BmNPV replication and infection through down-regulation of the cellular glycolytic pathway.


Subject(s)
Bombyx , Glycolysis , Insect Proteins , Nucleopolyhedroviruses , Animals , Bombyx/virology , Bombyx/metabolism , Nucleopolyhedroviruses/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Amino Acid Sequence , Cloning, Molecular , Fat Body/metabolism , Fat Body/virology , Gene Expression Regulation
19.
Sci Total Environ ; 921: 171192, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401727

ABSTRACT

Emerging evidence suggests that replacing mineral fertilizers with organic livestock manure can effectively suppress reactive gaseous nitrogen (N) emissions from soils. However, the extent of this mitigation potential and the underlying microbial mechanisms in orchards remain unclear. To address this knowledge gap, we measured nitrous and nitric oxide (N2O and NO) emissions, microbial N cycling gene abundance, and N2O isotopomer ratios in pear and citrus orchards under three different fertilization regimes: no fertilization, mineral fertilizer, and manure plus mineral fertilizer. The results showed that although manure application caused large transient peaks of N2O, it reduced cumulative emissions of N2O and NO by an average of 20 % and 17 %, respectively, compared to the mineral fertilizer treatment. Partial replacement of mineral fertilizers with manure enhanced the contribution of AOA to nitrification and reduced the contribution of AOB, thus reducing N2O emissions from nitrification. Isotope analysis suggested that the pathway for N2O production in the soils of both orchards was dominated by bacterial denitrification and nitrifier denitrification. The manure treatment reduced the ratio of denitrification products. Additionally, the dual isotope mixing model results indicated that partially replacing mineral fertilizers with manure could promote soil denitrification, resulting in more N2O being reduced. N-oxide emissions were on average 67 % higher in the pear orchard than in the citrus orchard, probably due to the differences in soil physicochemical properties and growth habits between the two orchards. These findings underscore the potential of partially replacing mineral fertilizers with organic manure in orchards to reduce gaseous N emissions, contributing to the transition towards environmentally sustainable and climate-smart agricultural practices.

SELECTION OF CITATIONS
SEARCH DETAIL