Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Res ; 258: 119483, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914254

ABSTRACT

Due to the persistent nature and significant negative impacts of perfluorooctanoic acid (PFOA) on human health and other organisms, the emergence of new PFOA alternatives, such as perfluoro (2-methyl-3-oxhexanoic) acid (GenX) and perfluoro-3,6,9-trioxyundecanoic acid (PFO3TDA), have drawn significant attention. However, the toxic effects of PFOA and its substitutes on bones remain limited. In this study, we administered different concentrations of PFOA, GenX, and PFO3TDA via gavage to 3-week-old male BALB/C mice for four weeks. X-ray and micro-CT scans revealed shortening of the femur and tibia and significant reduction in bone density. Additionally, PFOA, GenX, and PFO3TDA promoted osteoblast senescence and impaired osteogenic capabilities. This was characterized by a decrease in the expression of osteogenesis-related genes (OCN, ALP, Runx2, etc.) and an increase in the expression of aging and inflammation-related factors (p16INK4a, P21, MMP3, etc). Furthermore, RNA sequencing revealed activation of the ferroptosis pathway in PFOA-treated osteoblasts, characterized by notable lipid peroxidation and excessive iron accumulation. Finally, by inhibiting the ferroptosis pathway with ferrostatin-1 (Fer-1), we effectively alleviated the senescence of MC3T3-E1 cells treated with PFOA, GenX, and PFO3TDA, and improved their osteogenic capabilities. Therefore, our study provides a new therapeutic insight into the impact of PFOA and its substitutes on bone growth and development.

2.
Front Plant Sci ; 15: 1395628, 2024.
Article in English | MEDLINE | ID: mdl-38817929

ABSTRACT

Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.

3.
Bioorg Chem ; 147: 107362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615474

ABSTRACT

Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.


Subject(s)
Fluorescent Dyes , Inflammation , Peroxynitrous Acid , Peroxynitrous Acid/analysis , Peroxynitrous Acid/antagonists & inhibitors , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Inflammation/drug therapy , Animals , Molecular Structure , Mice , Humans , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Optical Imaging , Dose-Response Relationship, Drug , Structure-Activity Relationship , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Male
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 272-280, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686407

ABSTRACT

The existing one-time identity authentication technology cannot continuously guarantee the legitimacy of user identity during the whole human-computer interaction session, and often requires active cooperation of users, which seriously limits the availability. This study proposes a new non-contact identity recognition technology based on cardiac micro-motion detection using ultra wideband (UWB) bio-radar. After the multi-point micro-motion echoes in the range dimension of the human heart surface area were continuously detected by ultra wideband bio-radar, the two-dimensional principal component analysis (2D-PCA) was exploited to extract the compressed features of the two-dimensional image matrix, namely the distance channel-heart beat sampling point (DC-HBP) matrix, in each accurate segmented heart beat cycle for identity recognition. In the practical measurement experiment, based on the proposed multi-range-bin & 2D-PCA feature scheme along with two conventional reference feature schemes, three typical classifiers were selected as representatives to conduct the heart beat identification under two states of normal breathing and breath holding. The results showed that the multi-range-bin & 2D-PCA feature scheme proposed in this paper showed the best recognition effect. Compared with the optimal range-bin & overall heart beat feature scheme, our proposed scheme held an overall average recognition accuracy of 6.16% higher (normal respiration: 6.84%; breath holding: 5.48%). Compared with the multi-distance unit & whole heart beat feature scheme, the overall average accuracy increase was 27.42% (normal respiration: 28.63%; breath holding: 26.21%) for our proposed scheme. This study is expected to provide a new method of undisturbed, all-weather, non-contact and continuous identification for authentication.


Subject(s)
Heart , Principal Component Analysis , Humans , Heart/physiology , Algorithms , Heart Rate , Signal Processing, Computer-Assisted , Motion , Biometric Identification/methods , Respiration
5.
Nanomaterials (Basel) ; 14(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535672

ABSTRACT

This paper investigated the effect of nano-calcium silicate hydrate (n-C-S-H) on the early compressive strength of mineral powder-cement systems under low-temperature curing conditions (5 °C). The hydration mechanism of n-C-S-H in the mineral powder-cement system at different dosages was analyzed by combining it with XRD, DSC-TG, MIP, and other techniques. The results show that n-C-S-H significantly enhances the early compressive strength of the mineral powder-cement system under low-temperature curing conditions, with optimal results observed at a dosage of 1.0% (mass fraction). The XRD, DSC-TG, and MIP tests reveal that n-C-S-H promotes the hydration of the mineral powder cement, accelerates the generation rate of hydration products, reduces the porosity of the hardened mineral powder-cement slurry, and improves the system's density.

6.
J Phys Chem Lett ; 15(2): 371-379, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38175525

ABSTRACT

Reactive force field (ReaxFF) is a commonly used force field for modeling chemical reactions at the atomic level. Recently, JAX-ReaxFF, combined with automatic differentiation, has been used to efficiently parametrize ReaxFF. However, its analytical formula may lead to inaccurate predictions. While neural network-based potentials (NNPs) trained on density functional theory-labeled data offer a more accurate method, it requires a large amount of training data to be trained from scratch. To overcome these issues, we present a multiple-fidelity method that combines JAX-ReaxFF and NNP and apply the method on MoS2, a promising two-dimensional semiconductor for flexible electronics. By incorporating implicit prior physical information, ReaxFF can serve as a cost-effective way to generate pretraining data, facilitating more accurate simulations of MoS2. Moreover, in the Mo-S-H system, the pretraining strategy can reduce root-mean-square errors of energy by 20%. This approach can be extended to a wide variety of material systems, accelerating their computational research.

7.
Nanomicro Lett ; 16(1): 35, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019309

ABSTRACT

Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation. To get the most energy storage out of the battery at low temperatures, improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases. Herein, this review critically outlines electrolytes' limiting factors, including reduced ionic conductivity, large de-solvation energy, sluggish charge transfer, and slow Li-ion transportation across the electrolyte/electrode interphases, which affect the low-temperature performance of Li-metal batteries. Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding. Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared. Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.

8.
Plant Dis ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787688

ABSTRACT

Aralia elata (Miq.) Seem., is grown for its medicinal and nutritional properties in northeastern China. The tender shoots are used as wild vegetables. The plant saponin components have antioxidant and neuroprotective activities, and are used for the treatment of chronic disease (Xia et al. 2021). In July 2021, root rot disease was observed in five-year-old A. elata plants in Qingyuan County (41°91' N, 124°59' E), Liaoning Province, China. The incidence of roots rot was approximately 50% in old fields, with the leaves of the infected plants appearing chlorotic and wilting. The lesions on the taproots were dark brown and soft, with degraded internal organization. Leading edge of necrotic tissue from symptomatic roots was cut 5×5×3 mm, placed in 75% ethanol for 30 s, and then in 3% sodium hypochlorite for 2 min. After three rinses in sterile distilled water, the samples were dried on sterile filter paper before plating on potato dextrose agar (PDA) and incubation at 25℃. Monosporic cultures were obtained by the collection of single spores from individual isolates. After 7 days on PDA, mycelia in the colonies appeared cottony and pink, white, or purple in color, while their undersides were pink and white. Spore characteristics were evaluated after transfer to carnation leaf agar (CLA) and incubation for 20 days (Zhang et al. 2021). The macroconidia were falciform, slightly curved or straight, two to five septate, and 20.57 to 33.75 × 3.62 to 6.11 µm (n=40). The microconidia were ovoid or oval, zero to one septate, and 5.12 to 13.53 × 3.04 to 4.79 µm (n=40). Chlamydospores were globose to subglobose, intercalary or terminal, with an average diameter of 13.76 µm (n=40).To identify the pathogen, the internal transcribed spacer (ITS) region, large subunit (LSU) ribosomal DNA, and translation elongation factor 1 alpha (TEF-1α) gene were amplified using the respective primer pairs ITS1/ITS4, LR0R/LR7, and EF1-728F/EF1-986R (Cheng et al. 2020; Fu et al. 2019). Comparisons with GenBank, the sequences of ITS, LSU, and TEF-1 had 99 to 100% homology with Fusarium oxysporum (accessions numbers- MH707084, OQ380519, and GU250609, respectively). The sequences were deposited in GenBank: OP482273 (ITS), OP491955 (LSU), and OP503498 (TEF-1α). Maximum likelihood phylogeny of the identified sequences using MEGA-X software indicated that the isolate represented F. oxysporum. The taproots of 30 one-year-old A. elata were washed and inoculated with 1×106/ml of the conidial suspension for two hours, and another 30 used as controls with sterile water. After planting in sterilized forest soil in flowerpots (36×30 cm), the plants were grown in a greenhouse for two weeks at 25℃ with 14 h of light. It was found that 50% of the roots showed typical root rot symptoms, while the controls were asymptomatic. The pathogenicity test was repeated three times, and reisolation of F. oxysporum from the roots fulfilled Koch's postulates. This is the first report of root rot in A. elata caused by F. oxysporum in China and indicates the necessity for suitable management strategies to protect A. elata production. References: Cheng, Y., et al. 2020. Plant Dis. 104:3072. Fu, R., et al. 2019. Plant Dis. 103:1426. Xia, W., et al. 2021. Mini-Rev Med Chem. 21:2567. Zhang, X. M., et al. 2021. Plant Dis. 105:1223.

9.
Autophagy ; 19(11): 2934-2957, 2023 11.
Article in English | MEDLINE | ID: mdl-37450577

ABSTRACT

Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.


Subject(s)
Autophagy , Sertoli Cells , Male , Animals , Mice , Autophagy/genetics , Phosphorylation , Cell Polarity , Ubiquitin/metabolism , Protein Serine-Threonine Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism
10.
Clin Biochem ; 109-110: 79-85, 2022.
Article in English | MEDLINE | ID: mdl-35932794

ABSTRACT

OBJECTIVE: Human epididymal protein 4 (HE4) has been widely used as an important clinical tumor biomarker for epithelial ovarian cancer. HE4 has recently been suggested to be an inflammatory biomarker and we hypothesized that the serum HE4 level upon intensive care unit (ICU) admission might predict prognosis in septic patients. We hypothesized that serum HE4 level upon intensive care unit (ICU) admission could predict prognosis in septic patients. METHODS: Serum levels of HE4, procalcitonin (PCT), C-reactive protein (CRP), IL-6 and IL-8 were quantified, and sequential organ failure assessment (SOFA) scores were recorded on day one of admission to ICU. The area under the receiver operating characteristic (ROC) curve (AUC) analysis of HE4, IL-6, PCT and SOFA at ICU admission for 28-day mortality was used to evaluate the ability of HE4 in predicting 28-day mortality of sepsis. Multivariate regression analysis was used to identify the independent risk factors for 28-day mortality. RESULTS: A total of 1289 patients were recruited, and 117 patients were included for final analysis. On day of ICU admission, septic patients had significantly higher levels of serum HE4 than those with infection without sepsis, those with ovarian cancer, or healthy controls. Compared with septic survivors, septic non-survivors presented with significantly higher serum HE4 concentrations. Serum levels of HE4 correlated with disease severity scores and cytokine levels (IL-6 and IL-8). Upon ICU admission, the AUC for HE4 level association with 28-day mortality was 0.881, higher than the AUC for SOFA (0.713), IL-6 (0.589), and PCT (0.567). A regression analysis showed that HE4 was an independent mortality predictor. CONCLUSION: HE4 can predict poor prognosis in septic patients, which may help to identify a group of septic patients at high risk of death.


Subject(s)
Critical Illness , Sepsis , Humans , Prospective Studies , Interleukin-6 , Interleukin-8 , Sepsis/diagnosis , Procalcitonin , Intensive Care Units , ROC Curve , Prognosis , Biomarkers
11.
Article in English | MEDLINE | ID: mdl-35162304

ABSTRACT

The Yangtze River Delta is one of the top five Chinese regions affected by COVID-19, as it is adjacent to Hubei Province, where COVID-19 first emerged. We investigated the impact of COVID-19 non-pharmaceutical interventions (NPIs) on changes in respiratory infectious diseases (RIDs) incidence and air quality in the Yangtze River Delta by constructing two proportional tests and fitting ARIMA and linear regression models. Compared with the pre-COVID-19 period, the average monthly incidence of seven RIDs decreased by 37.80% (p < 0.001) and 37.11% (p < 0.001) during the COVID-19 period and the post-vaccination period, respectively, in Shanghai, and decreased by 20.39% (p < 0.001) and 22.86% (p < 0.001), respectively, in Zhejiang. Similarly, compared with the pre-COVID-19 period, the monthly overall concentrations of six air pollutants decreased by 12.7% (p = 0.003) and 18.79% (p < 0.001) during the COVID-19 period and the post-vaccination period, respectively, in Shanghai, and decreased by 12.85% (p = 0.008) and 15.26% (p = 0.001), respectively, in Zhejiang. Interestingly, no significant difference in overall incidence of RIDs and concentrations of air quality was shown between the COVID-19 period and the post-vaccination period in either Shanghai or Zhejiang. This study provides additional evidence that the NPIs measures taken to control COVID-19 were effective in improving air quality and reducing the spread of RIDs. However, a direct causal relationship has not been established.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Communicable Diseases , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , China/epidemiology , Environmental Monitoring , Humans , Incidence , Particulate Matter/analysis , SARS-CoV-2
12.
J Biomed Res ; 37(5): 382-393, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-37198178

ABSTRACT

Anti-cancer therapy often causes premature ovarian insufficiency and infertility as the ovarian follicle reserve is extremely sensitive to chemotherapy drugs, such as cisplatin. Various fertility preservation methods have been explored for women, especially prepubertal girls undergoing radiotherapy and chemotherapy due to cancer. In recent years, mesenchymal stem cell-derived exosomes (MSC-exos) have been reported to play an important role in tissue repair and the treatment of various diseases. In the current study, we observed that human umbilical cord-derived MSC-exos (hucMSC-exos) after short-term culture improved follicular survival and development while receiving cisplatin treatment. Moreover, intravenous injection of hucMSC-exos improved ovarian function and ameliorated inflammatory environment within the ovary. The underlying mechanism of hucMSC-exos on fertility preservation was associated with the down-regulation of p53-related apoptosis and their anti-inflammatory function. Based on these findings, we propose that hucMSC-exos may be a potential approach to improve fertility in women diagnosed with cancer.

13.
Autophagy ; 18(3): 643-660, 2022 03.
Article in English | MEDLINE | ID: mdl-34229552

ABSTRACT

There is increasing evidence that mitophagy, a specialized form of autophagy to degrade and clear long-lived or damaged mitochondria, is impaired in aging and age-related disease. Previous study has demonstrated the obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. However, it remains unknown whether mitophagy functions in oocyte and what's the regulatory mechanism in oocyte aging. In the study, when fully grown oocytes were treated with CCCP, an uncoupling agent to induce mitophagy, we found the activation of the PRKN-mediated mitophagy pathway accompanied the blockage of meiosis at metaphase I stage. Our result then demonstrated its association with the decreased activity of RAB7 and all the observed defects in CCCP treated oocytes could be effectively rescued by microinjection of mRNA encoding active RAB7Q67L or treatment with the RAB7 activator ML098. Further study indicated PRKN protein level as a rate-limiting factor to facilitate degradation of RAB7 and its GEF (guanine nucleotide exchange factor) complex CCZ1-MON1 through the ubiquitin-proteasome system. In GV oocytes collected during ovarian aging, we found the age-related increase of PINK1 and PRKN proteins and a significant decrease of RAB7 which resulted in defects of mitophagosome formation and the accumulation of damaged mitochondria. The age-related retardation of female fertility was improved after in vivo treatment of ML098. Thus, RAB7 activity is required to maintain the balance between mitophagy and chromosome stability and RAB7 activator is a good candidate to ameliorate age-related deterioration of oocyte quality.Abbreviations: ATG9: autophagy related 9A; ATP: adenosine triphosphate; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CCZ1: CCZ1 vacuolar protein trafficking and biogenesis associated; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GAPs: GTPase-activating proteins; GEF: guanine nucleotide exchange factor; GV: germinal vesicle; GVBD: germinal vesicle breakdown; LAMP1: lysosomal-associated membrane protein 1; MI: metaphase I stage of meiosis; MII: metaphase II stage of meiosis; Mito: MitoTracker; mtDNA: mitochondrial DNA; MON1: MON1 homolog, secretory trafficking associated; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RAB7: RAB7, member RAS oncogene family; ROS: reactive oxygen species; TEM: transmission electron microscopy; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; UB: ubiquitin.


Subject(s)
Autophagy , Mitophagy , Animals , Autophagy/physiology , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA, Mitochondrial , Female , Guanine Nucleotide Exchange Factors , Meiosis , Mitophagy/genetics , Oocytes/metabolism , Protein Kinases/metabolism , Quality Control , Ubiquitin/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Environ Res ; 201: 111616, 2021 10.
Article in English | MEDLINE | ID: mdl-34233156

ABSTRACT

BACKGROUND: Global climate change could have potential impact on enterovirus (EV)-induced infectious diseases. However, the environmental factors promoting acute hemorrhagic conjunctivitis (AHC) circulation remain inconclusive. This study aimed to quantify the relationship between the environment and AHC. METHODS: We retrieved the monthly counts and incidence of AHC, meteorological variables and air quality in mainland China between 2013 and 2018. Exposure risks were evaluated by multivariate distributed lag nonlinear models. RESULTS: A total of 219,599 AHC cases were reported in 31 provinces of China, predominantly in southern and central China, seasonally increased in summer. AHC incidence increased by 7% between 2013 and 2018, from 2.6873 to 2.7570 per 100,000 people. A moderate positive correlation was seen between AHC and monthly mean temperature, relative humidity (RH) and precipitation. Each unit increment was associated with a relative risk for AHC of 1.058 at 17°-32 °C at lag 0 months, 1.017 at 65-71% RH at lag 1.4 months, and 1.039 at 400-569 mm at lag 2.4 months. By contrast, a negative correlation was seen between monthly ambient NO2 and AHC. CONCLUSION: Long-term exposure to higher mean temperature, RH and precipitation were associated with an increased risk of AHC. The general public, especially susceptible populations, should pay close attention to weather changes and take protective measures in advance to any AHC outbreak as the above situations occur.


Subject(s)
Air Pollution , Conjunctivitis, Acute Hemorrhagic , Air Pollution/adverse effects , China/epidemiology , Conjunctivitis, Acute Hemorrhagic/epidemiology , Humans , Meteorology , Weather
15.
Front Chem ; 9: 807630, 2021.
Article in English | MEDLINE | ID: mdl-35178378

ABSTRACT

Structural superlubricity (SSL), a state of ultra-low friction between two solid contacts, is a fascinating phenomenon in modern tribology. With extensive molecular dynamics simulations, for systems showing SSL, here we discover two different dependences between friction and normal load by varying the size of the loading area. The essence behind the observations stems from the coupling between the normal load and the edge effect of SSL systems. Keeping normal load constant, we find that by reducing the loading area, the friction can be reduced by more than 65% compared to the large loading area cases. Based on the discoveries, a theoretical model is proposed to describe the correlation between the size of the loading area and friction. Our results reveal the importance of loading conditions in the friction of systems showing SSL, and provide an effective way to reduce and control friction.

16.
PLoS One ; 15(12): e0244938, 2020.
Article in English | MEDLINE | ID: mdl-33382860

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0238105.].

17.
PLoS One ; 15(8): e0238105, 2020.
Article in English | MEDLINE | ID: mdl-32853282

ABSTRACT

Biochar derived from straw is a potential low-cost adsorbent for metal ions and organic pollutants, but its practical application is still limited by the adsorption capacity. In this study, the correlation between the biochar's properties and pyrolysis temperature was explored. The adsorption mechanism was studied by monitoring the changes of biochar properties before and after adsorption using BET, SEM, XPS and FT-IR spectroscopy. The adsorption mechanism was revealed following the adsorption kinetics and the changes in biochar's properties before and after adsorption. The methylene blue (MB) and Pb2+ adsorption removal efficiency reached 95% at the initial concentration of 125 and 500 mg/L, respectively. Physisorption, chemisorption, and pore filling mechanisms determined the adsorption process of MB and Pb2+ on biochar. The Pb2+ adsorption process was highly affected by chemical co-precipitation at higher pyrolysis temperatures. The appearance of tar particles increased the adsorption rate of Pb2+. The biochar obtained at the pyrolysis temperature at 500, 800 and 900°C proved to be applicable for Pb2+ removal. Chemisorption and porosity dominated the MB adsorption, and biochars produced at pyrolysis temperatures of 200, 800 and 900°C are potential materials for MB removal. This study provides optimal pyrolysis conditions for transforming maize straw into valuable, low-cost materials for the removal of different pollutants.


Subject(s)
Charcoal/chemistry , Lead/chemistry , Methylene Blue/chemistry , Zea mays/chemistry , Adsorption , Kinetics , Lead/isolation & purification , Methylene Blue/isolation & purification , Pyrolysis , Surface Properties , Waste Products
18.
Zhongguo Zhong Yao Za Zhi ; 44(23): 5134-5142, 2019 Dec.
Article in Chinese | MEDLINE | ID: mdl-32237350

ABSTRACT

Traditional Chinese medicine( TCM) decoction contains complex bitterness. In this paper,the simple mixing of TCM monomer bitter substances is used as the entry point to study the law of bitterness superposition. With berberine hydrochloride( alkaloids),geniposide( terpenoids),and arbutin( glycosides) as mother liquor,sophoridine( alkaloids),gentiopicroside( terpenoids),and puerarin( glycosides) as additive substances,these different additive substances were mixed with different mother liquor according to concentration gradients to form different liquid mixtures. The bitterness of the additive solution and the mixtures was evaluated by traditional human taste panel method( THTPM) and electronic tongue; the bitterness-concentration fitting model of the additive solution and the liquid mixtures was established by Weibull and logarithmic curves. By comparing and analyzing the bitterness-concentration model and the bitterness difference( ΔI_0/ΔI_e) of the additive solution and the mixture,the influence of mother liquor on the bitterness of the mixture was investigated. The results showed that both the additive solution bitterness model and the liquid mixture bitterness model were consistent with the Weibull model and the logarithmic model( THTPM: R~2≥0. 887 0,P<0. 01; electronic tongue test:R~2≥0. 753 2,P<0. 05). The fitting degree of the Weibull model was generally higher than that of the logarithmic model; the bitterness difference( ΔI_0) was monotonously decreasing; the fitting equation of tongue bitterness and electronic tongue bitterness: R~2≥0. 874 2,P<0. 01. In this article,through the superposition of different kinds of TCM bitter substances,THTPM and electronic tongue test was combined. It was found that the bitterness after superposition was still in Weibull or logarithmic relationship with the concentration of additive substances; THTPM showed that the effect of bitter mother liquor on the bitterness of the mixture decreased with the increase of the concentration of the additive; the bitterness of the electronic tongue was obviously related to the bitterness of THTPM. However,further verification is needed later by optimizing the concentration gradient and expanding the sample size.


Subject(s)
Electronic Nose , Medicine, Chinese Traditional , Taste , Alkaloids/analysis , Glycosides/analysis , Humans , Terpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...