Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Cardiovasc Diabetol ; 23(1): 264, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026310

ABSTRACT

BACKGROUND: Atherogenic index of plasma (AIP) has been reported as a critical predictor on the risks and clinical outcomes of cardiovascular diseases (CVDs), and we aimed to explore the potential predictive value of cumulative AIP on major adverse cardiac events (MACE), stroke, myocardial infarction (MI) and cardiovascular mortality. METHODS: A large-scale community-based prospective cohort was established from December 2011 to April 2012 and followed up in May to July 2014. The endpoint outcomes were obtained before December 31, 2021. AIP was calculated as the logarithmically transformed ratio of triglyceride (TG) to high-density lipoprotein cholesterol (HDL-c) and cumulative AIP was the average value of AIP in 2012 and 2014. RESULTS: An overall of 3820 participants (36.1% male) with mean (SD) age of 59.1 (8.7) years, were enrolled. Within a median follow-up of 7.5 years, a total of 371 (9.7%) participants were documented with MACE, 293 (7.7%) participants developed stroke, 68 (1.8%) suffered from MI and 65 (1.7%) experienced cardiovascular mortality. Multivariable Cox regression analysis revealed significant associations between cumulative AIP and the risk of MACE, stroke and MI. Regarding MACE, individuals with one higher unit of cumulative AIP were associated with 75% increment on the incidence of going through MACE in fully adjusted model, while categorizing participants into four groups, individuals in the highest cumulative AIP quartile were significantly associated with increased incidence of MACE (HR = 1.76, 95%CI: 1.27-2.44, p < 0.001 in fully adjusted model), stroke (HR = 1.69, 95%CI: 1.17-2.45, p = 0.005) and MI (HR = 2.82, 95%CI: 1.18-6.72, p = 0.019). But not a significant association was observed between cumulative AIP and cardiovascular mortality. In subgroup analysis, the association of cumulative AIP and the incidence of stroke was more pronounced in the elderly (HR: 0.89 vs. 2.41 for the age groups < 65 years and ≥ 65 years, p for interaction = 0.018). CONCLUSIONS: A higher cumulative AIP was significantly associated with an increased risk of MACE, stroke and MI independent of traditional cardiovascular risk factors in a community-based population, and the association of cumulative AIP and stroke was particularly pronounced in the elderly population.


Subject(s)
Biomarkers , Cholesterol, HDL , Myocardial Infarction , Predictive Value of Tests , Triglycerides , Humans , Male , Female , Middle Aged , Prospective Studies , Aged , Risk Assessment , Biomarkers/blood , Prognosis , Triglycerides/blood , Cholesterol, HDL/blood , Time Factors , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Myocardial Infarction/mortality , Stroke/mortality , Stroke/epidemiology , Stroke/diagnosis , Stroke/blood , Risk Factors , Heart Disease Risk Factors , Cardiovascular Diseases/mortality , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/blood , Incidence
2.
Front Microbiol ; 15: 1410505, 2024.
Article in English | MEDLINE | ID: mdl-39027092

ABSTRACT

Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.

3.
Clin Genet ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075926

ABSTRACT

ATP6V1B2 encodes the subunit of the vacuolar H+-ATPase, which is an enzyme responsible for the acidification of intracellular organelles and essential for cell signaling and neurotransmitter release. The aim of the study is to identify the correlation between ATP6V1B2 and epilepsy. Trio-exome sequencing was performed. Reverse Transcription-PCR and Quantitative real-time PCR analyses were carried out to determine whether this variant leads to nonsense-mediated mRNA decay (NMD). Drosophila models with knocked-down homologous genes of ATP6V1B2 were generated to study the causal relationship between the ATP6V1B2 and the phenotype of epilepsy. We described a 5-year-old male with a novel variant c.1163delT(p.Tyr389IlefsTer13) in ATP6V1B2, who presented with epilepsy. The expression level of the premature termination codon (PTC) transcript was normal in the patient, which indicated that NMD evasion existed in the PTC transcript. We generated an animal model using Drosophila to study the knock down effects of Vha55, which is the ATP6V1B2 ortholog in fly. The Vha55 knockdown flies show seizure-like behaviors and climbing defects. This study expands the variation spectrum of the ATP6V1B2 gene. Cross-species animal model demonstrates the causal relationship between ATP6V1B2 defect and epilepsy, and shed new insights into the disease mechanism caused by ATP6V1B2 LOF variants.

4.
Front Pharmacol ; 15: 1387409, 2024.
Article in English | MEDLINE | ID: mdl-38887546

ABSTRACT

Our previous study highlighted the therapeutic potential of glutathione (GSH), an intracellular thiol tripeptide ubiquitous in mammalian tissues, in mitigating hepatic and cerebral damage. Building on this premise, we posited the hypothesis that GSH could be a promising candidate for treating acute hepatic encephalopathy (AHE). To verify this conjecture, we systematically investigated the feasibility of GSH as a therapeutic agent for AHE through comprehensive pharmacokinetic, pharmacodynamic, and mechanistic studies using a thioacetamide-induced AHE rat model. Our pharmacodynamic data demonstrated that oral GSH could significantly improve behavioral scores and reduce hepatic damage of AHE rats by regulating intrahepatic ALT, AST, inflammatory factors, and homeostasis of amino acids. Additionally, oral GSH demonstrated neuroprotective effects by alleviating the accumulation of intracerebral glutamine, down-regulating glutamine synthetase, and reducing taurine exposure. Pharmacokinetic studies suggested that AHE modeling led to significant decrease in hepatic and cerebral exposure of GSH and cysteine. However, oral GSH greatly enhanced the intrahepatic and intracortical GSH and CYS in AHE rats. Given the pivotal roles of CYS and GSH in maintaining redox homeostasis, we investigated the interplay between oxidative stress and pathogenesis/treatment of AHE. Our data revealed that GSH administration significantly relieved oxidative stress levels caused by AHE modeling via down-regulating the expression of NADPH oxidase 4 (NOX4) and NF-κB P65. Importantly, our findings further suggested that GSH administration significantly regulated the excessive endoplasmic reticulum (ER) stress caused by AHE modeling through the iNOS/ATF4/Ddit3 pathway. In summary, our study uncovered that exogenous GSH could stabilize intracerebral GSH and CYS levels to act on brain oxidative and ER stress, which have great significance for revealing the therapeutic effect of GSH on AHE and promoting its further development and clinical application.

5.
Viruses ; 16(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38932257

ABSTRACT

Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 and three farms in Georgia in 2023. They were screened by BCoV-specific real-time reverse transcription-PCR, and 15 BCoV-positive samples were identified. Among them, five BCoV strains from fecal samples were isolated using human rectal tumor-18 (HRT-18) cells. The genomic sequences of five strains were obtained. The phylogenetic analysis illustrated that these new strains clustered with US BCoVs that have been detected since the 1990s. Sequence analyses of the spike proteins of four pairs of BCoVs, with each pair originally collected from the respiratory and enteric sites of one animal, revealed the potential amino acid residue patterns, such as D1180 for all four enteric BCoVs and G1180 for three of four respiratory BCoVs. This project provides new BCoV isolates and sequences and underscores the genetic diversity of BcoVs, the unknown mechanisms of disease types, and the necessity of sustained surveillance and research for BCoVs.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Feces , Phylogeny , Cattle , Animals , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Coronavirus, Bovine/classification , Feces/virology , Cattle Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Genome, Viral , Spike Glycoprotein, Coronavirus/genetics , Humans , Genetic Variation , Ohio
6.
Chem Asian J ; : e202400492, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945828

ABSTRACT

Transparent silica aerogel, serving as one typical porous and transparent material, possesses various unique features (e.g., large amounts of pores and interfaces, super-lightweight, super thermal insulation, low refractive index similar to gas), and it has attracted great attention in the fields of science, technology, engineering, art, and others. Transparency is one important evaluation index of transparent silica aerogel, and it was influenced by various factors such as raw materials, sol-gel reactions, phase separation, and drying methods. The structure design and fabrication of transparent silica aerogel is one huge and fine engineering. In this review, the optical/chemical guidance and design for the preparation of transparent silica aerogels are discussed, and typical applications, such as Cherenkov detectors, solar energy collection, lighting systems, and transparent fabric, also were discussed. Finally, a future outlook on the opportunities and challenges of transparent silica aerogels was proposed.

7.
Oncogene ; 43(30): 2325-2337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877132

ABSTRACT

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.


Subject(s)
Drug Resistance, Neoplasm , Humans , Male , Animals , Mice , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Lineage/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Xenograft Model Antitumor Assays , Cell Plasticity/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Prognosis , Membrane Glycoproteins , Intracellular Signaling Peptides and Proteins
8.
J Ethnopharmacol ; 333: 118483, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38914150

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acetaminophen (APAP) induced liver injury (AILI) is a common cause of clinical hepatic damage and even acute liver failure. Our previous research has shown that Schisandra chinensis lignan extract (SLE) can exert a hepatoprotective effect by regulating lipid metabolism. Although polysaccharides from Schisandra chinensis (S. chinensis), like lignans, are important components of S. chinensis, their pharmacological activity and target effects on AILI have not yet been explored. AIM OF THE STUDY: This study aims to quantitatively reveal the role of SCP in the pharmacological activity of S. chinensis, and further explore the pharmacological components, potential action targets and mechanisms of S. chinensis in treating AILI. MATERIALS AND METHODS: The therapeutic effect of SCP on AILI was systematically determined via comparing the efficacy of SCP and SLE on in vitro and in vivo models. Network pharmacology, molecular docking and multi-omics techniques were then used to screen and verify the action targets of S. chinensis against AILI. RESULTS: SCP intervention could significantly improve AILI, and the therapeutic effect was comparable to that of SLE. Notably, the combination of SCP and SLE did not produce mutual antagonistic effects. Subsequently, we found that both SCP and SLE could significantly reverse the down-regulation of GPX4 caused by the APAP modeling, and then further improving lipid metabolism abnormalities. CONCLUSIONS: Hepatoprotective effects of SCP and SLE is most correlated with their regulation of GSH/GPX4-mediated lipid accumulation. This is the first exploration of the hepatoprotective effect and potential mechanism of SCP in treating AILI, which is crucial for fully utilizing S. chinensis and developing promising AILI therapeutic agents.


Subject(s)
Glutathione , Lignans , Lipid Metabolism , Polysaccharides , Schisandra , Lignans/pharmacology , Schisandra/chemistry , Polysaccharides/pharmacology , Animals , Lipid Metabolism/drug effects , Glutathione/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Molecular Docking Simulation , Acetaminophen , Glutathione Peroxidase/metabolism , Humans , Male , Mice , Plant Extracts/pharmacology
9.
J Hazard Mater ; 472: 134569, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743981

ABSTRACT

Recently, a new group of halopyridinol disinfection byproducts (DBPs) was reported in drinking water. The in vivo developmental and acute toxicity assays have shown that they were more toxic than a few commonly known aliphatic DBPs such as bromoform and iodoacetic acid. However, many pyridinol DBPs with the same main structures but different halogen substitutions were still unknown due to complicated water quality conditions and various disinfection methods applied in drinking water treatment plants. Studies on their transformation mechanisms in drinking water disinfection were quite limited. In this study, comprehensive detection and identification of halopyridinols were conducted, and five new halopyridinols were first reported, including 2-chloro-3-pyridinol, 2,6-dichloro-3-pyridinol, 2-bromo-5-chloro-3-pyridinol, 2,4,6-trichloro-3-pyridinol and 2,5,6-trichloro-3-pyridinol. Formation conditions and mechanisms of the halopyridinols were explored, and results showed that chlorination promoted their formation compared with chloramination. Halopyridinols were intermediate DBPs that could undergo further transformation/degradation with increasing contact time, disinfectant dose, bromide concentration, and pH. The in vitro cytotoxicity of the halopyridinols was evaluated using human hepatocellular carcinoma cells. Results showed that the cytotoxicity of 3,5,6-trichloro-2-pyridinol was the highest (EC50 = 474.3 µM), which was 13.0 and 1.6 times higher than that of 2-bromo-3-pyridinol (EC50 = 6214.5 µM) and tribromomethane (EC50 = 753.6 µM), respectively.


Subject(s)
Disinfectants , Disinfection , Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Humans , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water Purification/methods , Disinfectants/toxicity , Disinfectants/chemistry , Halogenation , Pyridines/toxicity , Pyridines/chemistry , Cell Survival/drug effects
10.
Res Sq ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585965

ABSTRACT

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

11.
Crit Rev Oncol Hematol ; 197: 104348, 2024 May.
Article in English | MEDLINE | ID: mdl-38588967

ABSTRACT

Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms, Castration-Resistant , Humans , Extracellular Vesicles/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/therapy , Male , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Tumor Microenvironment , Animals
12.
BMC Public Health ; 24(1): 1071, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632605

ABSTRACT

BACKGROUND: Inter-leg systolic blood pressure difference (ILSBPD) has emerged as a novel cardiovascular risk factor. This study aims to investigate the predictive value of ILSBPD on all-cause and cardiovascular mortality in general population. METHODS: We combined three cycles (1999-2004) of the National Health and Nutrition Examination Survey (NHANES) data. Levels of ILSBPD were calculated and divided into four groups based on three cut-off values of 5, 10 and 15mmHg. Time-to-event curves were estimated with the use of the Kaplan-Meier method, and two multivariable Cox proportional hazards regression models were conducted to assess the hazard ratios (HRs) and 95% confidence intervals (CIs) of all-cause and cardiovascular mortality associated with ILSBPD. RESULTS: A total of 6 842 subjects were included, with the mean (SD) age of 59.5 (12.8) years. By December 31, 2019, 2 544 and 648 participants were identified all-cause and cardiovascular mortality respectively during a median follow-up of 16.6 years. Time-to-event analyses suggested that higher ILSBPD was associated with increased all-cause and cardiovascular mortality (logrank, p < 0.001). Every 5mmHg increment of ILSBPD brings about 5% and 7% increased risk of all-cause and cardiovascular mortality, and individuals with an ILSBPD ≥ 15mmHg were significantly associated with higher incidence of all-cause mortality (HR 1.43, 95%CI 1.18-1.52, p < 0.001) and cardiovascular mortality (HR 1.73, 95%CI 1.36-2.20, p < 0.001) when multiple confounding factors were adjusted. Subgroup and sensitivity analysis confirmed the relationship. CONCLUSIONS: Our findings suggest that the increment of ILSBPD was significantly associated with higher risk of all-cause and cardiovascular mortality in general population.


Subject(s)
Cardiovascular Diseases , Humans , Middle Aged , Blood Pressure/physiology , Nutrition Surveys , Cardiovascular Diseases/epidemiology , Leg , Risk Factors
13.
Vet Pathol ; 61(4): 609-620, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38323378

ABSTRACT

Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , COVID-19/virology , COVID-19/pathology , COVID-19/mortality , Female , Male , Lions/virology , Panthera/virology , Lung/pathology , Lung/virology , Cats , Felidae/virology , Cat Diseases/virology , Cat Diseases/pathology
14.
Viruses ; 16(2)2024 02 17.
Article in English | MEDLINE | ID: mdl-38400082

ABSTRACT

Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.


Subject(s)
Cattle Diseases , Picornaviridae , Sheep Diseases , Animals , Cattle , Sheep , United States , Goats , Cattle Diseases/epidemiology , Genomics , Phylogeny
15.
Water Res ; 253: 121264, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38335842

ABSTRACT

Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.


Subject(s)
Disinfectants , Drinking Water , Sulfites , Thiosulfates , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Chlorine/analysis , Disinfectants/analysis , Halogens/analysis , Disinfection , Chlorides , Ascorbic Acid/analysis , Water Pollutants, Chemical/analysis , Halogenation
16.
Int Immunopharmacol ; 127: 111375, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38154213

ABSTRACT

Pseudomonas aeruginosa (PA) keratitis is a major cause of blindness characterized by corneal inflammation. In a murine model of PA keratitis, we assessed the detrimental effects of CXC chemokine ligand 16 (CXCL16). Quantitative PCR (qPCR), western blotting (WB) and immunofluorescence were used to measure the expression and localization of CXCL16 and its receptor, CXC chemokine receptor 6 (CXCR6). Clinical scores, plate counting, and hematoxylin-eosin staining were used to assess infection severity and its exacerbation by CXCL16. Immunofluorescence, myeloperoxidase assays, and flow cytometry were used to detect neutrophil activity and colocalization with CXCR6. WB and immunofluorescence were used to measure levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). These methods also were used to measure the activation of downstream NF-κB signaling and its positive feedback on CXCL16 expression. ELISA, flow cytometry, and qPCR were used to measure the expression of CXCL2 and T helper 17 (Th17) cell-related genes. CXCL16 and CXCR6 expression was increased in infected corneas. Topical application of CXCL16 exacerbated keratitis by increasing corneal bacterial load and promoting neutrophil infiltration, whereas neutralizing antibody against CXCL16 had the opposite effect. CXCL16 also increased ROS and MMP levels. This neutrophil activation may be caused by its positive feedback with the NF-κB pathway and the upregulation of CXCL2 and Th17 cell related-genes. These data suggest that CXCL16 is an attractive therapeutic target for PA keratitis.


Subject(s)
Keratitis , Pseudomonas Infections , Animals , Mice , Chemokine CXCL16 , Neutrophil Activation , NF-kappa B/metabolism , Pseudomonas aeruginosa , Reactive Oxygen Species
17.
Biomedicines ; 11(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38137547

ABSTRACT

As an immune checkpoint molecule, CD200 serves a foundational role in regulating immune homeostasis and promoting self-tolerance. While CD200 expression occurs in various immune cell subsets and normal tissues, its aberrant expression patterns in hematologic malignancies and solid tumors have been linked to immune evasion and cancer progression under pathological conditions, particularly through interactions with its cognate receptor, CD200R. Through this CD200/CD200R signaling pathway, CD200 exerts its immunosuppressive effects by inhibiting natural killer (NK) cell activation, cytotoxic T cell functions, and M1-polarized macrophage activity, while also facilitating expansion of myeloid-derived suppressor cells (MDSCs) and Tregs. Moreover, CD200/CD200R expression has been linked to epithelial-to-mesenchymal transition and distant metastasis, further illustrating its role in cancer progression. Conversely, CD200 has also been shown to exert anti-tumor effects in certain cancer types, such as breast carcinoma and melanoma, indicating that CD200 may exert bidirectional effects on cancer progression depending on the specific tumor microenvironment (TME). Regardless, modulating the CD200/CD200R axis has garnered clinical interest as a potential immunotherapeutic strategy for cancer therapy, as demonstrated by early-phase clinical trials. However, further research is necessary to fully understand the complex interactions of CD200 in the tumor microenvironment and to optimize its therapeutic potential in cancer immunotherapy.

18.
Front Med (Lausanne) ; 10: 1271897, 2023.
Article in English | MEDLINE | ID: mdl-37937141

ABSTRACT

Background: Silicone oil tamponade is widely used in vitreoretinal surgery. In some cases, silicone oil may not be extracted for a long time or even permanently and is referred to as silicone oil-dependent eyes. In this study, we aimed to deduce a theoretical formula for calculating intraocular lens power for silicone oil-dependent eyes and compare it with clinical findings. Methods: A theoretical formula was deduced using strict geometric optical principles and the Gullstrand simplified eye model. The preoperative and postoperative refractive statuses of patients with silicone oil-dependent eyes who underwent intraocular lens implantation were studied (Group A, n = 13). To further test our derived theoretical formula, patients with silicone oil tamponade and first-stage intraocular lens implantation were included (Group B, n = 19). In total, 32 patients (32 eyes) were included in the study. Results: In group A, the calculated intraocular lens power based on our formula was 24.96 ± 3.29 diopters (D), and the actual refraction of the patients was 24.02 ± 4.14D. In group B, the theoretical intraocular lens power was 23.10 ± 3.08D, and the clinical intraocular lens power was 22.84 ± 3.42D. There was no significant difference between the theoretical and clinical refractive powers, and the intraclass correlation coefficient was 0.771 for group A and 0.811 for group B (both p ≤ 0.001). The mean absolute error for silicone oil-dependent eyes of the formula was 1.66 ± 2.09D. After excluding data for two patients with a flat cornea (corneal refractive power < 42D), the mean absolute error decreased to 0.83 ± 0.62D. Conclusion: A strong correlation between the theoretical and clinical intraocular lens powers was observed, and the formula we deduced can be used to calculate the intraocular lens power for silicone oil-dependent eyes. This formula will help clinicians select a more appropriate intraocular lens for patients with silicone oil-dependent eyes, especially when the corneal refractive power is ≥42D.

19.
Postepy Dermatol Alergol ; 40(5): 670-678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38028411

ABSTRACT

Introduction: Dupilumab is approved for a variety of type 2 inflammatory diseases. Changes in chemokine levels during treatment require further analysis. Aim: We evaluated changes in eotaxin-3 and PARC levels after dupilumab treatment through a meta-analysis, aiming to provide more comprehensive results. Material and methods: Databases were searched to select eligible publications. The study quality was assessed after inclusion. The standardized mean difference (SMD) was used for evaluation. Results: Four studies were included. Eotaxin-3 levels were not seen significantly decreased at weeks 1 and 12, with SMD = -0.39 (95% CI: -1.78, 0.99) and -2.60 (95% CI: -5.77, 0.57), respectively (p > 0.05). Eotaxin-3 levels decreased significantly at weeks 2, 4, 8, 16, 24, 36, and 52, with SMD = -0.94 (95% CI: -1.61, -0.27); -1.17 (95% CI: -1.49, -0.84); -1.20 (95% CI: -1.52, -0.88); -1.31 (95% CI: -1.83, -0.79); -4.57 (95% CI: -6.90, -2.33); -5.28 (95% CI: -5.52, -5.04); and -4.03 (95% CI: -4.22, -3.85) (p < 0.05), respectively. PARC levels decreased significantly at weeks 4, 8, 12, and 16, with SMD = -1.08 (95% CI: -1.59, -0.58); -1.17 (95% CI: -1.68, -0.66); -1.11 (95% CI: -1.61, -0.60); and -1.15 (95% CI: -1.66, -0.64) (p < 0.05), respectively. Conclusions: Eotaxin-3 and PARC levels can be significantly reduced in patients treated with dupilumab.

20.
Animals (Basel) ; 13(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37835700

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in multiple animal species besides humans. The goal of this study was to report clinical signs, infection progression, virus detection and antibody response in a group of wild felids housed in adjacent but neighboring areas at the Pittsburgh Zoo. Initially, five African lions (Panthera leo krugeri) housed together exhibited respiratory clinical signs with viral shedding in their feces in March of 2021 coinciding with infection of an animal keeper. During the second infection wave in December 2021, four Amur tigers (Panthera tigris altaica) and a Canadian lynx (Lynx canadensis) showed clinical signs and tested positive for viral RNA in feces. In infected animals, viral shedding in feces was variable lasting up to 5 weeks and clinical signs were observed for up to 4 weeks. Despite mounting an antibody response to initial exposure, lions exhibited respiratory clinical signs during the second infection wave, but none shed the virus in their feces. The lions were positive for alpha variant (B.1.1.7 lineage) during the first wave and the tiger and lynx were positive for delta variant (AY.25.1. lineage) during the second wave. The viruses recovered from felids were closely related to variants circulating in human populations at the time of the infection. Cheetahs (Acinonyx jubatus) in the park did not show either the clinical signs or the antibody response.

SELECTION OF CITATIONS
SEARCH DETAIL