Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673941

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


ADP-ribosyl Cyclase 1 , Angiotensin II , Aortic Aneurysm, Abdominal , Mice, Knockout , Myocytes, Smooth Muscle , Vascular Remodeling , Animals , Male , Mice , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Signal Transduction , Vascular Remodeling/genetics
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article En | MEDLINE | ID: mdl-37958991

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Sirtuin 3 , Animals , Mice , Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Mammals/metabolism , Myocytes, Cardiac/metabolism , NAD/metabolism , Oxidative Stress , Pyroptosis , Sirtuin 3/metabolism , Stroke Volume , Ventricular Function, Left
3.
Can J Physiol Pharmacol ; 101(7): 369-381, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37192549

Obesity is a metabolic syndrome characterized by abnormal lipid deposition and energy imbalance. CD38 is a single-chain transmembrane glycoprotein widely expressed in a variety of cell types. The roles of skeletal muscle and brown fat in CD38 deficiency under HFD-induced obesity remain unknown. In this study, we established obesity model with HFD and examined the changes in metabolites with metabonomics. Our results showed that CD38 expression was increased in muscle and brown fat after HFD treatment. Moreover, the results of metabonomics showed that CD38 deficiency significantly altered the metabolites in energy metabolism, cofactor generation, and redox homeostasis. Furthermore, CD38 deficiency reduced the expressions of NADPH oxidase 2 and FASN in mRNA level. We found that the expressions of Sirt1, Sirt3, and PGC1α were upregulated in CD38-deficient muscle tissue. In brown fat, the Sirt1-3, cell death inducing DFFA-like effector A, ELOVL3, and Dio2 expressions were increased in CD38-deficient mice. Our results showed the uncoupling protein 1 expression was upregulated. And NAD+ supplementation increased the expression of Sirt1 and PGC1α after palmitic acid treatment. Taken together, our results demonstrated that the protection of CD38 deficiency on HFD-induced obesity was related to the inhibition of oxidative stress and increasing energy expenditure via activating NAD+/Sirtuins signaling pathways in muscle and brown fat.


Adipose Tissue, Brown , NAD , Animals , Mice , Adipose Tissue, Brown/metabolism , Diet, High-Fat , Energy Metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , NAD/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction , Sirtuin 1/metabolism
4.
Signal Transduct Target Ther ; 7(1): 148, 2022 05 06.
Article En | MEDLINE | ID: mdl-35513381

Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1ß and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.


Acute Lung Injury , Pneumonia , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Endothelial Cells/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , NF-kappa B/genetics , NF-kappa B/metabolism , Pneumonia/metabolism , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Tumor Necrosis Factor-alpha/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Opt Express ; 30(7): 10229-10238, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35472995

Photonic crystal lasers with a high-Q factor and small mode volume are ideal light sources for on-chip nano-photonic integration. Due to the submicron size of their active region, it is usually difficult to achieve high output power and single-mode lasing at the same time. In this work, we demonstrate well-selected single-mode lasing in a line-defect photonic crystal cavity by coupling it to the high-Q modes of a short double-heterostructure photonic crystal cavity. One of the FP-like modes of the line-defect cavity can be selected to lase by thermo-optically tuning the high-Q mode of the short cavity into resonance. Six FP-like modes are successively tuned into lasing with side mode suppression ratios all exceeding 15 dB. Furthermore, we show a continuous wavelength tunability of about 10 nm from all the selected modes. The coupled cavity system provides a remarkable platform to explore the rich laser physics through the spatial modulation of vacuum electromagnetic field at submicron scale.

6.
Int J Biol Sci ; 17(15): 4305-4315, 2021.
Article En | MEDLINE | ID: mdl-34803499

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA ß-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.


ADP-ribosyl Cyclase 1/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism/drug effects , Membrane Glycoproteins/metabolism , NAD/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Sirtuins/metabolism , ADP-ribosyl Cyclase 1/genetics , Animals , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , NAD/genetics , Non-alcoholic Fatty Liver Disease/genetics , Oxidative Stress , Signal Transduction , Sirtuins/genetics
7.
Stem Cell Res Ther ; 12(1): 364, 2021 06 26.
Article En | MEDLINE | ID: mdl-34174964

BACKGROUND: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. METHODS: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid ß oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. RESULTS: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. CONCLUSION: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.


Diet, High-Fat , Mesenchymal Stem Cells , 3T3-L1 Cells , Adipogenesis , Animals , Culture Media, Conditioned/pharmacology , Diet, High-Fat/adverse effects , Humans , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/therapy
8.
Can J Physiol Pharmacol ; 99(8): 803-811, 2021 Aug.
Article En | MEDLINE | ID: mdl-33356884

Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1ß (IL-1ß), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/ß, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.


NF-kappa B , Human Umbilical Vein Endothelial Cells , Humans , Signal Transduction
9.
Opt Express ; 28(11): 16486-16496, 2020 May 25.
Article En | MEDLINE | ID: mdl-32549470

The effective manipulation of mode oscillation and competition is of fundamental importance for controlling light emission in semiconductor lasers. Here we develop a rate equation model which considers the spatially modulated gain and spontaneous emission, which are inherently governed by the ripple of the vacuum electromagnetic field in a Fabry-Pérot (FP) microcavity. By manipulating the interplay between the spatial oscillation of the vacuum field and external optical injection via dual-beam laser interference, single longitudinal mode operation is observed in a FP-type microcavity with a side mode suppression ratio exceeding 40 dB. An exploration of this extended rate equation model bridges the gap between the classical model of multimode competition in semiconductor lasers and a quantum-optics understanding of radiative processes in microcavities.

10.
Article En | MEDLINE | ID: mdl-32265835

Macrophage migration inhibitory factor (MIF) has multiple intrinsic enzymatic activities of the dopachrome/phenylpyruvate tautomerase and thiol protein oxidoreductase, and plays an important role in the development of obesity as a pro-inflammatory cytokine. However, which enzymatic activity of MIF is responsible for regulating in obesity are still unknown. In the present study, we investigated the roles of the tautomerase of MIF in high fat diet (HFD)-induced obesity using MIF tautomerase activity-lacking (MIFP1G/P1G) mice. Our results showed that the serum MIF and the expression of MIF in adipose tissue were increased in HFD-treated mice compared with normal diet fed mice. The bodyweights were significantly reduced in MIFP1G/P1G mice compared with WT mice fed with HFD. The sizes of adipocytes were smaller in MIFP1G/P1G mice compared with WT mice fed with HFD using haematoxylin and eosin (H&E) staining. In addition, the MIFP1G/P1G mice reduced the macrophage infiltration, seen as the decreases of the expression of inflammatory factors such as F4/80, IL-1ß, TNFα, MCP1, and IL-6. The glucose tolerance tests (GTT) and insulin tolerance tests (ITT) assays showed that the glucose tolerance and insulin resistance were markedly improved, and the expressions of IRS and PPARγ were upregulated in adipose tissue from MIFP1G/P1G mice fed with HFD. Furthermore, we observed that the expressions of Bax, a pro-apoptotic protein, and the cleaved caspase 3-positive cells in white tissues were decreased and the ratio of Bcl2/Bax was increased in MIFP1G/P1G mice compared with WT mice. Taken together, our results demonstrated that the tautomerase activity-lacking of MIF significantly alleviated the HFD-induced obesity and adipose tissue inflammation, and improved insulin resistance in MIFP1G/P1G mice.


Diet, High-Fat , Inflammation/genetics , Insulin Resistance/genetics , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Adipocytes/physiology , Animals , Apoptosis/genetics , Apoptosis/physiology , Inflammation/blood , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Male , Mice , Mice, Obese , Mice, Transgenic , Obesity/complications , Obesity/genetics , Obesity/metabolism
11.
Front Physiol ; 10: 1125, 2019.
Article En | MEDLINE | ID: mdl-31551807

Our previous research showed that CD38 played vital roles in Ang-II induced hypertrophy and high fat diet induced heart injury. However, the role of CD38 in heart aging is still unknown. In the present study, we reported that CD38 knockdown significantly protected cardiomyocytes from D-galactose (D-gal)-induced cellular senescence. Cellular senescence was evaluated by ß-galactosidase staining, the expressions of genes closely related to aging including p16 and p21, and the ROS production, MDA content and the expressions of oxidant stress related genes were examined by biochemical analysis, Western blot and QPCR. Our results showed that the expression of CD38 was increased in H9c2 cells after D-gal treatment and the expressions of NAMPT and Sirt1 were downregulated in heart tissue from old mice. CD38 knockdown significantly reduced the number of SA-ß-gal-positive cells and the expressions of p16 and p21 in H9c2 cells with or without D-gal treatment. The acetylation level of total protein was decreased in CD38 knockdown group, but the expression of Sirt3 was increased in CD38 knockdown group treated with D-gal. In addition, knockdown of CD38 significantly attenuated D-gal induced ROS production, MDA content and NOX4 expression in the cells. Inhibition Sirt1 partially reversed the effects of CD38 knockdown on D-gal induced senescence and oxidative stress. Furthermore, NAD+ supplementation reduced D-gal induced cellular senescence, ROS production and MDA content. The expression of SOD2 was increased and the NOX4 expression was decreased in H9c2 cells after NAD+ supplementation. Taken together, our results demonstrated that CD38 knockdown alleviated D-gal induced cell senescence and oxidative stress via NAD+/Sirt1 signaling pathway.

12.
J Microbiol Immunol Infect ; 52(1): 62-74, 2019 Feb.
Article En | MEDLINE | ID: mdl-29530709

BACKGROUND/PURPOSE: This study investigated the distribution and persistence of multidrug resistant organisms (MDROs) including methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and multidrug-resistant Acinetobacter baumannii (MDRAB) in six long-term care facilities (LTCFs). METHODS: We investigated the distribution of MDROs in residents of six LTCFs and their environments from January to December 2016 (intervention period). Active surveillance of colonization of MDROs was performed by culturing rectal and nasal swab samples from the residents every three months. Multilocus sequence typing (MLST) was conducted, and genes for panton-valentine leukocidin (PVL) from MRSA isolates were determined. RESULTS: A total of 521 samples were positive for MDROs, and MRSA was the most common organism (65.1%), followed by MDRAB (11.3%), carbapenem-resistant Klebsiella pneumoniae (11.1%), carbapenem-resistant Escherichia coli (4.6%), and carbapenem-resistant P. aeruginosa (2.1%, n = 11). By a linear regression model, positive MRSA isolates from the environment were found to be statistically significant and associated with the number of colonized LTCF residents (p = 0.01), while the timing of the surveillance culture was not (p = 0.227). The main MLST types associated with PVL-production were sequence type (ST) 59, (40.0%, 24/60), ST30 (21.4%, 3/14), ST8 (87.5%, 14/16), and ST45 (3.6%, 1/28). The susceptibility rates of tetracycline (96.7%), trimethoprim-sulfamethoxazole (96.7%), and ciprofloxacin (81.7%) were statistically significant and higher in MRSA ST59, compared to the rates in MRSA ST45 isolates. CONCLUSIONS: MRSA was the most commonly colonized MDRO, both in the LTCF residents and in the environment, followed by MDRAB and carbapenem-resistant K. pneumoniae.


Bacterial Infections/microbiology , Drug Resistance, Multiple, Bacterial , Environmental Microbiology , Long-Term Care/statistics & numerical data , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Acinetobacter baumannii/isolation & purification , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Bacterial Infections/diagnosis , Bacterial Infections/epidemiology , Bacterial Toxins/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Exotoxins/genetics , Female , Genotype , Humans , Leukocidins/genetics , Male , Microbial Sensitivity Tests , Microbial Viability/drug effects , Middle Aged , Pseudomonas aeruginosa/isolation & purification , Taiwan/epidemiology
13.
Appl Opt ; 57(33): 9809-9813, 2018 Nov 20.
Article En | MEDLINE | ID: mdl-30462015

We propose and demonstrate a low-power 2×2 total internal reflection thermo-optic switch based on an X-junction configuration formed with a silicon oxynitride (SiON) core and polymer cladding. Unlike X-junctions reported thus far, our proposed configuration features a slot formed on the center of the X-junction and filled with polymer cladding. With such a configuration, the opposite thermo-optic characteristics of SiON and polymer and, hence, heat utilization efficiency can be fully utilized. Our fabricated proof-of-principle switch shows extinction ratios of larger than 15.34 dB and switching powers of less than ∼59.6 mW. The rise time and fall time of switching are 1.42 and 0.85 ms, respectively. The insertion losses are less than 10.6 dB for all channels, and the polarization-dependent loss is ∼0.3 dB.

14.
Cell Physiol Biochem ; 48(6): 2350-2363, 2018.
Article En | MEDLINE | ID: mdl-30114710

BACKGROUND/AIMS: Previous studies showed that CD38 deficiency protected heart from ischemia/reperfusion injury and high fat diet (HFD)-induced obesity in mice. However, the role of CD38 in HFD-induced heart injury remains unclear. In the present study, we have investigated the effects and mechanisms of CD38 deficiency on HFD-induced heart injury. METHODS: The metabolites in heart from wild type (WT) and CD38 knockout (CD38-/-) mice were examined using metabolomics analysis. Cell viability, lactate hydrogenase (LDH) release, super oxide dismutase (SOD) activity, reactive oxygen species (ROS) production, triglyceride concentration and gene expression were examined by biochemical analysis and QPCR. RESULTS: Our results revealed that CD38 deficiency significantly elevated the intracellular glutathione (GSH) concentration and GSH/GSSG ratio, decreased the contents of free fatty acids and increased intracellular NAD+ level in heart from CD38-/- mice fed with HFD. In addition, in vitro knockdown of CD38 significantly attenuated OA-induced cellular injury, ROS production and lipid synthesis. Furthermore, the expression of mitochondrial deacetylase Sirt3 as well as its target genes FOXO3 and SOD2 were markedly upregulated in the H9C2 cell lines after OA stimulation. In contrast, the expressions of NOX2 and NOX4 were significantly decreased in the cells after OA stimulation. CONCLUSION: Our results demonstrated that CD38 deficiency protected heart from HFD-induced oxidative stress via activating Sirt3/FOXO3-mediated anti-oxidative stress pathway.


ADP-ribosyl Cyclase 1/genetics , Diet, High-Fat , Forkhead Box Protein O3/metabolism , Membrane Glycoproteins/genetics , Oxidative Stress , Sirtuin 3/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/metabolism , Animals , Cell Line , Glutathione/metabolism , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxide Dismutase/metabolism
15.
Opt Lett ; 43(15): 3610-3613, 2018 Aug 01.
Article En | MEDLINE | ID: mdl-30067636

We propose and experimentally demonstrate a compact and electro-optic (EO) tunable interleaver in X-cut lithium niobate thin film using an asymmetrical Mach-Zehnder interferometer configuration. Our typical fabricated device has an EO interactive length of ∼1.35 mm and a total length of ∼4.0 mm. Over a wide wavelength range from 1528 to 1605 nm, the device exhibits polarization-insensitive center wavelengths and channel spacing of ∼49.7 GHz, but a slightly different extinction ratio of 10-20 and 12-23 dB, and electrical wavelength tuning sensitivity of ∼18 and ∼16 pm/V for the transverse electric- and transverse magnetic-polarized input light, respectively. The proposed interleaver also has the potential to be used as a tunable filter or a wavelength-selective switch.

16.
Mediators Inflamm ; 2018: 8736949, 2018.
Article En | MEDLINE | ID: mdl-29977153

CD38 was first identified as a lymphocyte-specific antigen and then has been found to be widely expressed in a variety of cell types. The functions of CD38 are involved in numerous biological processes including immune responses. Here, we showed the downregulations of both TLR2 mRNA and protein in macrophages from CD38-/- mice and in CD38 knockdown RAW264.7 cells. Several NF-κB-binding motifs in the promoter region of the TLR2 gene were identified by the bioinformatics analysis and were confirmed by the luciferase activity assay with the different truncated TLR2 promoters. CD38 deficiency resulted in the reduction of NF-κB p65 and acetyl-NF-κB p65 (Ac-p65) levels as determined by Western blot. The expression of Sirt1 did not change, but an increased activity of Sirt1 was observed in CD38-deficient macrophages. Inhibition of the Sirt1/NF-κB signaling pathway resulted in downregulation of TLR2 expression in RAW264.7 cells. However, re-expression of CD38 in the knockdown clones reversed the effect on Sirt1/NF-κB/TLR2 signaling, which is NAD-dependent. Moreover, the inflammatory cytokines including G-CSF, IL-1alpha, IL-6, MCP-1, MIP-1alpha, and RANTES were increased in CD38 knockdown RAW264.7 cells. Taken together, our data demonstrated that CD38 deficiency enhances inflammatory response in macrophages, and the mechanism may be partly associated with increased Sirt1 activity, which promoted NF-κB deacetylation and then inhibited expression of the TLR2 gene. Obviously, our study may provide an insight into the molecular mechanisms in CD38-mediated inflammation.


ADP-ribosyl Cyclase 1/deficiency , Inflammation/metabolism , Macrophages, Peritoneal/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Sirtuin 1/metabolism , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Blotting, Western , Computational Biology , Inflammation/genetics , Mice , RAW 264.7 Cells , Signal Transduction/genetics , Signal Transduction/physiology , Sirtuin 1/genetics , Toll-Like Receptor 2/metabolism
17.
J Cell Mol Med ; 22(7): 3638-3651, 2018 07.
Article En | MEDLINE | ID: mdl-29682889

We previously observed that disruption of FK506-binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)-induced cardiac hypertrophy in mice, whereas the adenovirus-mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)-induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6-/- ) mice and cardiac-specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini-pump. The results showed that FKBP12.6 deficiency aggravated AngII-induced cardiac hypertrophy, while cardiac-specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII-induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII-induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+ ]i), in which the protein significantly inhibited the key Ca2+ /calmodulin-dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF-2, AKT/Glycogen synthase kinase 3ß (GSK3ß)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII-induced cardiac hypertrophy through inhibiting Ca2+ /calmodulin-mediated signalling pathways.


Calcium/metabolism , Calmodulin/metabolism , Cardiomegaly/metabolism , Tacrolimus Binding Proteins/metabolism , Angiotensin II/metabolism , Angiotensin II/toxicity , Animals , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Cell Line , Gene Expression , Glycogen Synthase Kinase 3 beta/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/metabolism , Tacrolimus Binding Proteins/genetics
18.
J Cell Mol Med ; 22(1): 101-110, 2018 01.
Article En | MEDLINE | ID: mdl-28816006

It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38-deficient mice were resistant to high-fat diet (HFD)-induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38-/- and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38-/- mice, 3T3-L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD-fed mice or the MEFs, 3T3-L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38-/- male mice were significantly resistant to HFD-induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3-L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD-fed CD38-/- mice and CD38-/- MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38-/- MEFs. Finally, the CD38 deficiency-mediated activations of Sirt1 signalling were up-regulated or down-regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ-FASN signalling pathway during the development of obesity.


ADP-ribosyl Cyclase 1/deficiency , Adipogenesis , Adipose Tissue/metabolism , Lipogenesis , PPAR gamma/metabolism , Signal Transduction , Sirtuin 1/metabolism , ADP-ribosyl Cyclase 1/metabolism , Adipocytes/metabolism , Animals , Cell Differentiation , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Mice , NAD/metabolism
20.
Lipids Health Dis ; 16(1): 82, 2017 Apr 27.
Article En | MEDLINE | ID: mdl-28449683

BACKGROUND: Nonalcoholic fatty liver disease is one of the most common liver diseases in the world and is a typical hepatic manifestation of metabolic syndrome which is characterized with lipid accumulation in liver. Nicotinamide phosphoribosyltransferase (NAMPT) has been recently identified as an enzyme involved in nicotinamide adenine dinucleotide (NAD+) biosynthesis and plays an important role in cellular metabolism in variety of organs in mammals. The aim of this study was to investigate the effects of NAMPT on high fat diet-induced hepatic steatosis. METHODS: Hepatic steatosis model was induced by high fat diet (HFD) in C57BL/6 mice in vivo. HepG2 and Hep1-6 hepatocytes were transfected with NAMPT vector plasmid or treated with NAMPT inhibitor FK866 and then incubated with oleic acid. Lipids accumulation was examined by HE staining or oil red staining. Quantitative RT-PCR and Western blot were used to measure expressions of the genes involved in lipogenic synthesis. RESULTS: FK866 significantly promoted liver steatosis in the mice fed with HFD and hepatic lipid accumulation in vitro, accompanied by the increases of the expressions of lipogenic genes such as sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN). Nicotinamide mononucleotide (NMN) and NAD+ significantly rescued the actions of FK866 in vitro. In contrast, overexpression of NAMPT in HepG2 and Hep1-6 hepatocytes ameliorated hepatic lipid accumulation. In addition, FK866 decreased the protein levels of Sirt1 and phospho-AMPKα in liver of the HFD fed mice. Furthermore, Resveratrol, a Sirt1 activator, significantly reduced lipogenic gene expressions, while EX-527, a Sirt1 specific inhibitor, had the opposite effects. CONCLUSION: Our results demonstrated that inhibition of NAMPT aggravated the HFD- or oleic acid-induced hepatic steatosis through suppressing Sirt1-mediated signaling pathway. On the one hand, the inhibition of NAMPT reduced the production of NAD+ through inhibiting the NAD+ salvage pathway, resulting in the decrease of Sirt1 activity, and then attenuated the deacetylation of SREBP1 in which the inhibition of SREBP1 activity promoted the expressions of FASN and ACC. On the other hand, the reduced Sirt1 activity alleviated the activation of AMPKα to further enhance SREBP1 activities.


AMP-Activated Protein Kinases/genetics , Cytokines/genetics , Liver/enzymology , Nicotinamide Phosphoribosyltransferase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Sirtuin 1/genetics , Sterol Regulatory Element Binding Protein 1/genetics , AMP-Activated Protein Kinases/metabolism , Acrylamides/pharmacology , Animals , Carbazoles/pharmacology , Cell Line , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Diet, High-Fat/adverse effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , NAD/pharmacology , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oleic Acid/pharmacology , Piperidines/pharmacology , Resveratrol , Signal Transduction , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Stilbenes/pharmacology
...