Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 440
2.
Front Neurol ; 15: 1410516, 2024.
Article En | MEDLINE | ID: mdl-38882699

Background: The pathogenesis of idiopathic sudden sensorineural hearing loss remains unclear, and no substantial breakthroughs have been achieved in its treatment. Therefore, we conducted this study with the aim to investigate the clinical features and prognostic factors of patients with idiopathic sudden sensorineural hearing loss and auditory nerve enhancement by using three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging (MRI) of the inner ear. Methods: We retrospectively analyzed the clinical data of adult patients, who experienced sudden unilateral deafness and were admitted to the Department of Otolaryngology, Shandong Provincial ENT Hospital, between December 2020 and July 2021. Patients were divided into an auditory nerve enhancement group and a normal inner ear group, according to 3D-FLAIR MRI findings. Differences in sex, age, side, disease course, underlying diseases, dizziness/vertigo, vestibular function, degree of deafness, hearing classification, and treatment efficacy were analyzed. Results: Of the 112 cases of sudden idiopathic deafness, 16.07% exhibited enhancement of the auditory nerve on inner-ear 3D-FLAIR MRI. Statistically significant differences in the degree and type of hearing loss were detected between the two groups (p < 0.05). The rates of abnormal results in the caloric, vestibular-evoked myogenic potential, and video head impulse tests were higher in the auditory nerve enhancement group. The cure rate (11.1%) in patients with auditory nerve enhancement was lower than that in patients with normal inner ear MRI findings (28.7%); however, the difference was not statistically significant. Conclusion: Findings from 3D-FLAIR MRI scans of the inner ear indicated that patients with sudden deafness and auditory nerve enhancement experienced severe hearing loss, aggravated vestibular function injury, and a significantly decreased cure rate. Prompt treatment, ideally within 2 weeks of disease onset, can facilitate hearing recovery.

3.
Angew Chem Int Ed Engl ; : e202404784, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38868978

The zinc-iodine aqueous battery is a promising energy storage device, but the conventional two-electron reaction potential and energy density of the iodine cathode are far from meeting practical application requirements. Given that iodine is rich in redox reactions, activating the high-valence iodine cathode reaction has become a promising research direction for developing high-voltage zinc-iodine batteries. In this work, by designing a multifunctional electrolyte additive trimethylamine hydrochloride (TAH), a stable high-valence iodine cathode in four-electron-transfer I-/I2/I+ reactions with a high theoretical specific capacity is achieved through a unique amine group, Cl bidentate coordination structure of (TA)ICl. Characterization techniques such as synchrotron radiation, in-situ Raman spectra, and DFT calculations are used to verify the mechanism of the stable bidentate structure. This electrolyte additive stabilizes the zinc anode by promoting the desolvation process and shielding mechanism, enabling the zinc anode to cycle steadily at a maximum areal capacity of 57 mAh cm-2 with 97% zinc utilization rate. Finally, the four-electron-transfer aqueous Zn-I2 full cell achieves 5000 stable cycles at an N/P ratio of 2.5. The unique bidentate coordination structure contributes to the further development of high-valence and high capacity aqueous zinc-iodine batteries.

4.
Cell Rep ; 43(7): 114387, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38896777

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.

5.
Heliyon ; 10(11): e32753, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38912456

Introduction: Congenital bronchial atresia (CBA), as a rare developmental abnormality of the lung, is usually asymptomatic and is accidently discovered in most cases. Currently, no standardized guidelines for the treatment or management of CBA have been established. Case presentation: A 22-year-old male soldier was referred to Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Medical University due to chest tightness and shortness of breath after repeated strenuous activities. Contrast-enhanced computed tomography (CT) revealed an 18mm × 11mm solitary, well-circumscribed, and solid nodule with no enhancement in the right upper lobe (RUL), and emphysematous changes distributed throughout the RUL. A flexible bronchoscopic examination showed extrinsic compression stenosis in the bronchial opening of the right middle lobe (RML). After three-dimensional (3D) reconstruction CT and a multidisciplinary consultation, a diagnosis of CBA in the anterior segment (B3) of RUL was established. Subsequently, thoracoscopic right upper lobectomy was performed and resulted in an improved respiratory capacity 6 months after surgery. To date, the patient has good quality of life without any complication. Conclusion: This study underscores the role of bronchoscopy, 3D reconstruction CT, and a multidisciplinary consultation in the diagnosis of CBA, and highlights that a thoracoscopic intervention should be considered in such case.

6.
Bioresour Technol ; 403: 130863, 2024 Jul.
Article En | MEDLINE | ID: mdl-38772520

The OH production by adding magnetite (MGT) alone has been reported in composting. However, the potential of nitrilotriacetic acid (NTA) addition for magnetite-amended sludge composting remained unclear. Three treatments with different addition [control check (CK); T1: 5 % MGT; T2: 5 % MGT + 5 % NTA] were investigated to characterize hydroxyl radical, humification and bacterial community response. The NTA addition manifested the best performance, with the peak OH content increase by 52 % through facilitating the cycle of Fe(Ⅱ)/Fe(Ⅲ). It led to the highest organic matters degradation (22.3 %) and humic acids content (36.1 g/kg). Furthermore, NTA addition altered bacterial community response, promoting relative abundances of iron-redox related genera, and amino acid metabolism but decreasing carbohydrate metabolism. Structural equation model indicated that temperature and Streptomyces were the primary factors affecting OH content. The study suggests that utilizing chelators is a promising strategy to strengthen humification in sewage sludge composting with adding iron-containing minerals.


Composting , Ferrosoferric Oxide , Humic Substances , Hydroxyl Radical , Nitrilotriacetic Acid , Sewage , Nitrilotriacetic Acid/chemistry , Ferrosoferric Oxide/chemistry , Composting/methods , Iron/chemistry
7.
Acta Pharmacol Sin ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822084

Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.

9.
Materials (Basel) ; 17(3)2024 Feb 03.
Article En | MEDLINE | ID: mdl-38591981

Single-pass isothermal hot compression tests on four medium-Mn steels with different C and Al contents were conducted using a Gleeble-3500 thermal simulation machine at varying deformation temperatures (900-1150 °C) and strain rates (0.01-5 s-1). Based on friction correction theory, the friction of the test stress-strain data was corrected. On this basis, the Arrhenius constitutive model of experimental steels considering Al content and strain compensation and hot processing maps of different experimental steels at a strain of 0.9 were established. Moreover, the effects of C and Al contents on constitutive model parameters and hot processing performance were analyzed. The results revealed that the increase in C content changed the trend of the thermal deformation activation energy Q with the true strain. The Q value of 2C7Mn3Al increased by about 50 KJ/mol compared with 7Mn3Al at a true strain greater than 0.4. In contrast, increasing the Al content from 0 to 1.14 wt.% decreased the activation energy of thermal deformation in the true strain range of 0.4-0.9. Continuing to increase to 3.30 wt.% increased the Q of 7Mn3Al over 7Mn by about 65 KJ/mol over the full strain range. In comparison, 7Mn1Al exhibited the best hot processing performance under the deformation temperature of 975-1125 °C and strain rate of 0.2-5 s-1. This is due to the addition of C element reduces the δ-ferrite volume fraction, which leads to the precipitation of κ-carbides and causes the formation of microcracks; an increase in Al content from 0 to 1.14 wt.% reduces the austenite stability and improves the hot workability, but a continued increase in the content up to 3.30 wt.% results in the emergence of δ-ferrite in the microstructure, which slows down the austenite DRX and not conducive to the hot processing performance.

10.
Iran J Basic Med Sci ; 27(6): 685-694, 2024.
Article En | MEDLINE | ID: mdl-38645489

Objectives: Tubal factor infertility (TFI) is common female infertility responsible for a large portion of female factor infertility. This study reveals the effect of the quercetin of Huoxuehuayu Tongluo Decoction with azithromycin on the pregnancy rate and inflammation of TFI female rats. Materials and Methods: Female Sprague Dawley rats were constructed into the TFI model and treated with quercetin, Huoxuehuayu Tongluo Decoction, and combination therapy (quercetin and azithromycin). Pregnancy rate and litter size were measured. Network pharmacology was applied to analyze the interaction between Huoxuehuayu Tongluo Decoction and TFI. The combination of quercetin and IL-6 was analyzed by molecular docking. HE staining and electron microscopy were used to observe the histopathology and ultrastructure of fallopian tube tissues. The TNF-α, IL-1ß, IL-6, IL-8, and MPO levels were detected by ELISA. The activation of JAK/STAT, MAPK, and NF-κB p65 pathways was detected by western blot or immunohistochemistry. Results: Quercetin was the main active component of Huoxuehuayu Tongluo Decoction, and could bind to IL-6 in TFI. Target genes were enriched in the IL-17 signaling pathway, JAK-STAT signaling pathway, inflammatory disease, etc. Under the quercetin and azithromycin combination therapy, both rat pregnancy rates and litter sizes increased significantly. quercetin and azithromycin alleviated the symptoms of hydrosalpinx and inflammatory damage in fallopian tube tissues. The phosphorylation of JAK/STAT and MAPK pathways and NF-κB p65 translocation to the nucleus were significantly inhibited by the quercetin and azithromycin therapy. Conclusion: Quercetin and azithromycin combination therapy inhibited inflammation and phosphorylation of JAK/STAT and MAPK pathways to improve TFI inflammation and pregnancy function.

11.
Autophagy ; : 1-21, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686804

Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.

12.
Dig Dis Sci ; 69(6): 2083-2095, 2024 Jun.
Article En | MEDLINE | ID: mdl-38637456

PURPOSE: Colorectal cancer (CRC) is a very common malignancy of the digestive system. Despite a variety of treatments including surgery, chemotherapeutic and targeted drugs, the prognosis for patients with CRC is still unsatisfactory and the mortality remains high. Protein phosphorylation plays an essential role in tumorigenesis and progression and is also crucial for protein to act with proper functions. Ferroptosis is found widely involved in various diseases especially tumors as a newly identified programmed cell death. METHODS: In our study, we aimed at PPP2CA as a prospective target which may play a crucial role in CRC progression. In one hand, knockdown of PPP2CA significantly enhanced the malignant phenotype in HCT116. In the other hand, knockdown of PPP2CA significantly enhanced Erastin-induced ferroptosis as well. RESULTS: Specifically, knockdown of PPP2CA in HCT116 significantly increased the relative level of malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+, and decreased GSH/GSSG ratio after the treatment of certain concentration of Erastin. Besides, we found that the inhibition of PPP2CA further led to the suppression of SCD1 expression in CRC cells in a AMPK-dependent way. CONCLUSION: Ultimately, we conclude that PPP2CA may regulate Erastin-induced ferroptosis through AMPK/SCD1 signaling pathway.


AMP-Activated Protein Kinases , Colorectal Neoplasms , Ferroptosis , Protein Phosphatase 2 , Humans , Ferroptosis/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , HCT116 Cells , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Signal Transduction , Piperazines/pharmacology , Reactive Oxygen Species/metabolism
13.
Front Nutr ; 11: 1354486, 2024.
Article En | MEDLINE | ID: mdl-38524850

Introduction: With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods: In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results: The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion: In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.

14.
Proc Natl Acad Sci U S A ; 121(11): e2313842121, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38437541

Soil organic carbon (SOC) mineralization is a key component of the global carbon cycle. Its temperature sensitivity Q10 (which is defined as the factor of change in mineralization with a 10 °C temperature increase) is crucial for understanding the carbon cycle-climate change feedback but remains uncertain. Here, we demonstrate the universal control of carbon quality-availability tradeoffs on Q10. When carbon availability is not limited, Q10 is controlled by carbon quality; otherwise, substrate availability controls Q10. A model driven by such quality-availability tradeoffs explains 97% of the spatiotemporal variability of Q10 in incubations of soils across the globe and predicts a global Q10 of 2.1 ± 0.4 (mean ± one SD) with higher Q10 in northern high-latitude regions. We further reveal that global Q10 is predominantly governed by the mineralization of high-quality carbon. The work provides a foundation for predicting SOC dynamics under climate and land use changes which may alter soil carbon quality and availability.

15.
Molecules ; 29(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474610

Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk.


Ion Mobility Spectrometry , Milk , Animals , Milk/chemistry , Gas Chromatography-Mass Spectrometry , Multivariate Analysis , Ketones/analysis
17.
Math Biosci Eng ; 21(1): 34-48, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303412

Accurate determination of the onset time in acute ischemic stroke (AIS) patients helps to formulate more beneficial treatment plans and plays a vital role in the recovery of patients. Considering that the whole brain may contain some critical information, we combined the Radiomics features of infarct lesions and whole brain to improve the prediction accuracy. First, the radiomics features of infarct lesions and whole brain were separately calculated using apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences of AIS patients with clear onset time. Then, the least absolute shrinkage and selection operator (Lasso) was used to select features. Four experimental groups were generated according to combination strategies: Features in infarct lesions (IL), features in whole brain (WB), direct combination of them (IW) and Lasso selection again after direct combination (IWS), which were used to evaluate the predictive performance. The results of ten-fold cross-validation showed that IWS achieved the best AUC of 0.904, which improved by 13.5% compared with IL (0.769), by 18.7% compared with WB (0.717) and 4.2% compared with IW (0.862). In conclusion, combining infarct lesions and whole brain features from multiple sequences can further improve the accuracy of AIS onset time.


Ischemic Stroke , Humans , Radiomics , Brain/diagnostic imaging , Infarction , Machine Learning
18.
Foods ; 13(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338535

In recent years, green and healthy foods have attracted much attention. Plant-based foods have become an alternative to animal-derived foods. In this study, we used walnut and purple rice as the primary raw materials to produce a fermented plant drink. The process included boiling, mixing, grinding, inoculation, fermentation, and sterilization. We then analyzed the similarities and differences between the resulting walnut and purple rice fermented plant drink and an unfermented walnut and purple rice plant drink, as well as dairy-based yoghurt, in terms of physical chemistry, flavor, and sensory characteristics. We also examined the similarities and differences between the walnut and purple rice fermented plant drink and room-temperature yoghurt. The study results revealed that the walnut and purple rice fermented plant drink exhibited greater viscosity than the walnut and purple rice unfermented plant drink and room-temperature yoghurt. Additionally, the former displayed enhanced stability and recovery ability. Notably, distinguishable differences were observed between the three samples in terms of the presence of unknown volatiles and the umami signal, as indicated by electronic nose/tongue and GC-IMS analyses. The umami flavor of the walnut and purple rice fermented plant drink surpasses that of room-temperature yoghurt, while its taste is less salty than that of the walnut and purple rice plant drink. Despite possessing a weaker aroma than dairy-based yogurt, it is more potent than the walnut and purple rice plant drink. Additionally, its relative abundance of olefins, ketones, and alcohols enhances its unique flavor profile, surpassing both other options. Based on sensory analysis, it can be deduced that walnut and purple rice fermented plant drink has the highest overall acceptance rate.

19.
Nano Lett ; 24(6): 1843-1850, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38316029

The penetrating growth of Li into the inorganic solid-state electrolyte (SSE) is one key factor limiting its practical application. Research to understand the underlying mechanism of Li penetration has been ongoing for years and is continuing. Here, we report an in situ scanning electron microscopy methodology to investigate the dynamic behaviors of isolated Li filaments in the garnet SSE under practical cycling conditions. We find that the filaments tend to grow in the SSE, while surprisingly, those filaments can self-dissolve with a decrease in the current density without a reversal of the current direction. We further build a coupled electro-chemo-mechanical model to assess the interplay between electrochemistry and mechanics during the dynamic evolution of filaments. We reveal that filament growth is strongly regulated by the competition between the electrochemical driving force and mechanical resistive force. The numerical results provide rational guidance for the design of solid-state batteries with excellent properties.

20.
Adv Sci (Weinh) ; 11(11): e2307872, 2024 Mar.
Article En | MEDLINE | ID: mdl-38178606

Aqueous zinc-ion batteries (AZIBs) are considered as attractive energy storage systems with great promise owing to their low cost, environmental friendliness and high safety. Nevertheless, cathode materials with stable structure and rapid diffusion of zinc ions are in great demand for AZIBs. In this work, a new kind of potassium vanadate compound (KV3 O8 ) is synthesized with fibrous morphology as an excellent cathode material for AZIBs, which shows outstanding electrochemical performance. KV3 O8 exhibits a high discharge capacity of 556.4 mAh g-1 at 0.8 A g-1 , and the capacity retention is 81.3% at 6 A g-1 even after a long cycle life of 5000 cycles. The excellent performance of the KV3 O8 cathode is benefited from the structural stability, sufficient active sites, and high conductivity, which is revealed by in situ X-ray diffraction and various other characterizations. This work offers a new design strategy into fabricating high efficiency cathode materials for AZIBs and beyond.

...