Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 9(2): e0095821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643446

ABSTRACT

The strict anaerobe Clostridium ljungdahlii can ferment CO or H2/CO2 via the Wood-Ljungdahl pathway to acetate, ethanol, and 2,3-butanediol. This ability has attracted considerable interest, since it can be used for syngas fermentation to produce biofuels and biochemicals. However, the key enzyme methylenetetrahydrofolate reductase (MTHFR) in the Wood-Ljungdahl pathway of the strain has not been characterized, and its physiological electron donor is unclear. In this study, we purified the enzyme 46-fold with a benzyl viologen reduction activity of 41.2 U/mg from C. ljungdahlii cells grown on CO. It is composed of two subunits, MetF (31.5 kDa) and MetV (23.5 kDa), and has an apparent molecular mass of 62.2 kDa. The brownish yellow protein contains 0.73 flavin mononucleotide (FMN) and 7.4 Fe, in agreement with the prediction that MetF binds one flavin and MetV binds two [4Fe4S] clusters. It cannot use NAD(P)H as its electron donor or catalyze an electron-bifurcating reaction in combination with ferredoxin as an electron acceptor. The reduced recombinant ferredoxin, flavodoxin, and thioredoxin of C. ljungdahlii can serve as electron donors with specific activities of 91.2, 22.1, and 7.4 U/mg, respectively. The apparent Km values for reduced ferredoxin and flavodoxin were around 1.46 µM and 0.73 µM, respectively. Subunit composition and phylogenetic analysis showed that the enzyme from C. ljungdahlii belongs to MetFV-type MTHFR, which is a heterodimer, and uses reduced ferredoxin as its electron donor. Based on these results, we discuss the energy metabolism of C. ljungdahlii when it grows on CO or H2 plus CO2. IMPORTANCE Syngas, a mixture of CO, CO2, and H2, is the main component of steel mill waste gas and also can be generated by the gasification of biomass and urban domestic waste. Its fermentation to biofuels and biocommodities has attracted attention due to the economic and environmental benefits of this process. Clostridium ljungdahlii is one of the superior acetogens used in the technology. However, the biochemical mechanism of its gas fermentation via the Wood-Ljungdahl pathway is not completely clear. In this study, the key enzyme, methylenetetrahydrofolate reductase (MTHFR), was characterized and found to be a non-electron-bifurcating heterodimer with reduced ferredoxin as its electron donor, representing another example of MetFV-type MTHFR. The findings will form the basis for a deeper understanding of the energy metabolism of syngas fermentation by C. ljungdahlii, which is valuable for developing metabolic engineering strains and efficient syngas fermentation technologies.


Subject(s)
Biofuels/analysis , Clostridium/enzymology , Clostridium/metabolism , Energy Metabolism/physiology , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Fermentation , Ferredoxins/metabolism , Flavodoxin/metabolism , Hydrogen/metabolism , Thioredoxins/metabolism
2.
Microbiol Spectr ; 9(1): e0092421, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34378958

ABSTRACT

Agrobacterium tumefaciens strain S33 can catabolize nicotine via a hybrid of the pyridine and pyrrolidine pathways. Most of the enzymes involved in this biochemical pathway have been identified and characterized, except for the one catalyzing the oxidation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine. Based on a previous genomic and transcriptomic analysis, an open reading frame (ORF) annotated to encode aldehyde dehydrogenase (Ald) in the nicotine-degrading cluster was predicted to be responsible for this step. In this study, we heterologously expressed the enzyme and identified its function by biochemical assay and mass spectrum analysis. It was found that Ald catalyzes the NAD-specific dehydrogenation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine. With the nonhydroxylated analog 3-succinoyl-semialdehyde-pyridine (SAP) as a substrate, Ald had a specific activity of 10.05 U/mg at pH 9.0 and apparent Km values of around 58.68 µM and 0.41 mM for SAP and NAD+, respectively. Induction at low temperature and purification and storage in low-salt buffers were helpful to prevent its aggregation and precipitation. Disruption of the ald gene caused a lower growth rate and biomass of strain S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine. Ald has a broad range of substrates, including benzaldehyde, furfural, and acetaldehyde. Recombinant Escherichia coli cells harboring the ald gene can efficiently convert furfural to 2-furoic acid at a specific rate of 0.032 mmol min-1 g dry cells-1, extending the application of Ald in the catalysis of bio-based furan compounds. These findings provide new insights into the biochemical mechanism of the nicotine-degrading hybrid pathway and the possible application of Ald in industrial biocatalysis. IMPORTANCE Nicotine is one of the major toxic N-heterocyclic aromatic alkaloids produced in tobacco plants. Manufacturing tobacco and smoking may lead to some environmental and public health problems. Microorganisms can degrade nicotine by various biochemical pathways, but the biochemical mechanism for nicotine degradation has not been fully elucidated. In this study, we identified an aldehyde dehydrogenase responsible for the oxidation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine; this was the only uncharacterized enzyme in the hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33. Similar to the known aldehyde dehydrogenase, the NAD-specific homodimeric enzyme presents a broad substrate range with high activity in alkaline and low-salt-containing buffers. It can catalyze not only the aldehyde from nicotine degradation but also those of benzaldehyde, furfural, and acetaldehyde. It was found that recombinant Escherichia coli cells harboring the ald gene could efficiently convert furfural to valuable 2-furoic acid, demonstrating its potential application for enzymatic catalysis.


Subject(s)
Agrobacterium tumefaciens/enzymology , Bacterial Proteins/metabolism , Nicotine/metabolism , Oxidoreductases/metabolism , Agrobacterium tumefaciens/chemistry , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Kinetics , NAD/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Pyridines/chemistry , Pyridines/metabolism , Substrate Specificity , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL