Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Biology (Basel) ; 13(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39056731

ABSTRACT

The changing global climate has significantly impacted the spread of plant pests. The cassava mealybug (Phenacoccus manihoti) is among the most dangerous quarantine pests affecting cassavas worldwide, causing substantial losses in agricultural production and food security across several regions. Although China is currently free of the cassava mealybug, its proximity to affected countries and extensive trade with these regions necessitate a detailed understanding of the pest's distribution pattern and dynamic ecological niche changes. Using the Biomod2 model, we selected two historical climate scenarios and two future climate scenarios (SSP1-2.6 and SSP5-8.5) to investigate the distribution patterns, potential habitats, distribution centers, and dynamic ecological niches of cassava mealybugs in China. Key environmental variables influencing the distribution were identified, including bio4, bio8, bio12, bio18, and bio19. The potential habitat of cassava mealybugs is mainly located in several provinces in southern China. In the future, the suitable habitat is projected to expand slightly under the influence of climate change, maintaining the overall trend, but the distribution center of suitable areas will shift northward. Dynamic ecological niche prediction results indicate the potential for further expansion; however, the ecological niches may be unequal and dissimilar in the invaded areas. The predictions could serve as a valuable reference for early warning systems and management strategies to control the introduction of cassava mealybugs.

2.
Front Genet ; 15: 1414074, 2024.
Article in English | MEDLINE | ID: mdl-38974385

ABSTRACT

The family Tephritidae in the order Diptera, known as true fruit flies, are agriculturally important insect pests. However, the phylogenetic relationships of true fruit flies, remain controversial. Moreover, rapid identification of important invasive true fruit flies is essential for plant quarantine but is still challenging. To this end, we sequenced the genome of 16 true fruit fly species at coverage of 47-228×. Together with the previously reported genomes of nine species, we reconstructed phylogenetic trees of the Tephritidae using benchmarking universal single-copy ortholog (BUSCO), ultraconserved element (UCE) and anchored hybrid enrichment (AHE) gene sets, respectively. The resulting trees of 50% taxon-occupancy dataset for each marker type were generally congruent at 88% nodes for both concatenation and coalescent analyses. At the subfamily level, both Dacinae and Trypetinae are monophyletic. At the species level, Bactrocera dorsalis is more closely related to Bactrocera latifrons than Bactrocera tryoni. This is inconsistent with previous conclusions based on mitochondrial genes but consistent with recent studies based on nuclear data. By analyzing these genome data, we screened ten pairs of species-specific primers for molecular identification of ten invasive fruit flies, which PCR validated. In summary, our work provides draft genome data of 16 true fruit fly species, addressing the long-standing taxonomic controversies and providing species-specific primers for molecular identification of invasive fruit flies.

3.
Sci Rep ; 14(1): 17200, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060323

ABSTRACT

Nutrition is a limiting feature of species evolution. The differences in nutritional requirements are the evolutionary result of differential adaptations to environmental changes, explaining differences in their ecological traits. Cnaphalocrocis medinalis and Cnaphalocrocis exigua, two related species of rice leaffolders, have similar morphology and feeding properties but different migration and overwintering behaviors. However, it is unclear whether they have evolved adult nutritional differentiation traits to coexist. To explore this issue, this study examined the effects of carbohydrates and amino acids on their reproductive and demographic parameters. The findings indicate that carbohydrate intake prolonged the longevity and population growth of two rice leaffolders, but amino acid intake promoted egg hatching only. However, nutrient deficiency made it impossible for C. medinalis to reproduce successfully and survive, but it did not affect C. exigua. The population expansion and survival of migratory C. medinalis relied on adult nutritional intake. Conversely, the nutrients necessary for C. exigua overwintering activity mostly came from the storage of larvae. The difference in nutritional requirements for population growth and survival between the two rice leaffolders partially explained their differences in migration and overwintering.


Subject(s)
Oryza , Animals , Oryza/growth & development , Amino Acids/metabolism , Population Growth , Nutritional Requirements , Moths/physiology , Moths/growth & development , Larva/physiology , Female , Longevity/physiology , Male , Species Specificity
4.
Chemistry ; : e202401669, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970448

ABSTRACT

A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124873, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39084016

ABSTRACT

Viscosity and polarity are essential parameters that play critical roles in various physiological processes. Thus, dual-emission fluorescent probes that respond to both polarity and viscosity are highly sought-after tools for studying these processes. In addressing this need, a novel fluorescent probe (L), with dual emissions centered at 460 nm and 780 nm, which can sensitively respond to polarity and viscosity respectively, has been developed. Probe (L) is constructed through rational molecular design, utilizing two conjugated synthons connected by a π-bond to form a D-π-A system. The twisted intramolecular charge transfer (TICT) state is dominant in low-viscosity environments, resulting in weak near-infrared (NIR) fluorescence. Conversely, the intramolecular charge transfer (ICT) state is expected to prevail in high-viscosity environments, leading to strong NIR fluorescence. The polarity-sensitive fluorescence centered at 460 nm can be attributed to the emission of the coumarin unit. Moreover, probe (L) exhibits low cytotoxicity and primarily targets mitochondria. By leveraging the dual-emission properties of probe (L), real-time imaging of polarity and viscosity fluctuations within cells has been achieved. Additionally, probe (L) can be used for in situ and in vivo imaging of rheumatoid arthritis (RA) with good imaging resolution.

6.
J Hazard Mater ; 476: 135157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39002488

ABSTRACT

Massive use of plastic products has caused their accumulation in soils, releasing large amounts of endogenous plastic additives (e.g., benzotriazole ultraviolet stabilizers, in short BZT-UVs) into terrestrial ecosystems. However, their plant toxicity is little known. Herein, we investigated the occurrence of BZT-UVs in contaminated farmland and selected three BZT-UV congeners to explore their toxic effects on the antioxidant, photosynthetic, and metabolic perturbation on rice (Oryza sativa). Results showed that the mean concentrations of ∑BZT-UVs in soil and plant samples were 180.7 ng/g dw and 156.4 ng/g dw, respectively. UV-P, UV-327 and UV-328 were the dominant BZT-UV congeners in both of soils and plants. Three BZT-UV congeners caused oxidative damages to rice in a dose-dependent manner, especially for UV-328. Functional genes involved in chlorophyll synthetases was inhibited by over 50 % under the stress of BZT-UVs, whereas those responsible for chlorophyll degradation were obviously promoted. The chlorophyll content was thus decreased, leading to a weakened photosynthesis system and an unbalanced carbon metabolism. The transcriptome and metabolome proved that the flux of carbohydrate metabolism and amino acid metabolism were obviously promoted in plants induced by BZT-UVs, which could inhibit the growth of rice. These findings offered insights into the coordinated responses of plants and advanced our understanding of potential ecological risks of BZT-UVs to terrestrial ecosystems.

7.
Chin Herb Med ; 16(3): 358-374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072200

ABSTRACT

Cymbopogon citratus in the gramineous family, also known as lemongrass (LG), is a perennial herb. LG, a drug and food homologous medicine, has a widely recorded medicinal value and food applications. To date, 158 LG compounds have been reported, including terpenoids, flavonoids, phenolic acids. Pharmacological and clinical studies have indicated that LG has antibacterial, neuroprotective, hypoglycemic, hypotensive, anti-inflammatory, and anti-tumor effects. This article reviews LG in ethnopharmacology, chemical composition, pharmacology, food, medicine, and daily chemical applications to provide a basis for the subsequent development of food and medicine.

8.
Toxicol Res ; 40(3): 431-440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911548

ABSTRACT

The Internet Data Center (IDC) is one of the most important infrastructures in the field of information technology. The cooling system for heat dissipation of IDC is indispensable due to it generates a large amount of heat during its calculation process, which may potentially harm its normal operation. Electronic fluorinated fluids have been widely used in cooling systems of IDC with stable physical and chemical properties. However, the biological toxicity of electronic fluorinated fluids has not been fully evaluated and there is a lack of unified safety standards, which may pose potential risks to the environment and human health. Here, hexafluoropropylene terpolymer (HFPT) as an example has been systematically studied, fully considering the application scenarios of data centers. Also, the emergency effects of fluorinated coolants in mammalian models from the perspectives of inhalation, skin contact, accidental entry into eyes, accidental ingestion, and chronic toxicity, are evaluated. Multiple in vivo experiments have proven that HFPT not only has stable physical and chemical properties, that can maintain the safe operation of IDC, but also has low physiological toxicity to mammals and can provide health benefits to data center staff and the assurance of surrounding environment. This study proves the good biological safety of electronic fluorinated fluids and provides a reference for environmental assessment and risk management of liquid cooling technology in IDC. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00234-3.

9.
Nat Commun ; 15(1): 4883, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849395

ABSTRACT

The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.


Subject(s)
DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , Protein Binding , Repressor Proteins , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Enhancer Elements, Genetic , HEK293 Cells , PHD Zinc Fingers , Histones/metabolism
10.
BMC Plant Biol ; 24(1): 534, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862913

ABSTRACT

BACKGROUND: Waterlogging stress (WS) negatively impacts crop growth and productivity, making it important to understand crop resistance processes and discover useful WS resistance genes. In this study, rye cultivars and wild rye species were subjected to 12-day WS treatment, and the cultivar Secale cereale L. Imperil showed higher tolerance. Whole transcriptome sequencing was performed on this cultivar to identify differentially expressed (DE) messenger RNAs (DE-mRNAs) and long non-coding RNAs (DE-lncRNAs) involved in WS response. RESULTS: Among the 6 species, Secale cereale L. Imperil showed higher tolerance than wild rye species against WS. The cultivar effectively mitigated oxidative stress, and regulated hydrogen peroxide and superoxide anion. A total of 728 DE-mRNAs and 60 DE-lncRNAs were discovered. Among these, 318 DE-mRNAs and 32 DE-lncRNAs were upregulated, and 410 DE-mRNAs and 28 DE-lncRNAs were downregulated. GO enrichment analysis discovered metabolic processes, cellular processes, and single-organism processes as enriched biological processes (BP). For cellular components (CC), the enriched terms were membrane, membrane part, cell, and cell part. Enriched molecular functions (MF) terms were catalytic activity, binding, and transporter activity. LncRNA and mRNA regulatory processes were mainly related to MAPK signaling pathway-plant, plant hormone signal transduction, phenylpropanoid biosynthesis, anthocyanin biosynthesis, glutathione metabolism, ubiquitin-mediated proteolysis, ABC transporter, Cytochrome b6/f complex, secondary metabolite biosynthesis, and carotenoid biosynthesis pathways. The signalling of ethylene-related pathways was not mainly dependent on AP2/ERF and WRKY transcription factors (TF), but on other factors. Photosynthetic activity was active, and carotenoid levels increased in rye under WS. Sphingolipids, the cytochrome b6/f complex, and glutamate are involved in rye WS response. Sucrose transportation was not significantly inhibited, and sucrose breakdown occurs in rye under WS. CONCLUSIONS: This study investigated the expression levels and regulatory functions of mRNAs and lncRNAs in 12-day waterlogged rye seedlings. The findings shed light on the genes that play a significant role in rye ability to withstand WS. The findings from this study will serve as a foundation for further investigations into the mRNA and lncRNA WS responses in rye.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Long Noncoding , RNA, Messenger , Secale , Stress, Physiological , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Secale/genetics , Secale/physiology , Stress, Physiological/genetics , RNA, Plant/genetics , Transcriptome
11.
Adv Healthc Mater ; : e2401114, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885954

ABSTRACT

Successful bone regeneration requires close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) are synthesized by combining the small molecules of chlorogenic acid (CGA) with Ca2+. Ca-CGA NPs internalized by cells can be dissolved to release free CGA and Ca2+ under low pH conditions in lysosomes. In vitro results demonstrate that Ca-CGA NPs can not only enhance the osteogenic differentiation of BMSCs but also promote the phenotype transformation of macrophages from M1 to M2. Furthermore, in vivo experiments confirm that Ca-CGA NPs treatment facilitates the recovery of rat skull defect model through both osteoinduction and immunomodulation. This study develops a new Ca-CGA NPs-based strategy to induce the differentiation of BMSCs into osteoblasts and the polarization of macrophages into M2 phenotype, which is promising for accelerating bone repair.

12.
Environ Res ; 254: 119083, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735377

ABSTRACT

Plateau river ecosystems are often highly vulnerable and responsive to environmental change. The driving mechanism of fish diversity and community assembly in plateau rivers under changing environments presents a significant complexity to the interdisciplinary study of ecology and environment. This study integrated molecular biological techniques and mathematical models to identify the mechanisms influencing spatial heterogeneity of freshwater fish diversity and driving fish community assembly in plateau rivers. By utilizing environmental-DNA metabarcoding and the null model, this study revealed the impact of the stochastic process on fish diversity variations and community assembly in the Huangshui Plateau River of the Yellow River Basin (YRB) in China. This research identified 30 operational taxonomic units (OTUs), which correspond to 20 different fish species. The findings of this study revealed that the fish α-diversity in the upstream region of Xining is significantly higher than in the middle-lower reach (Shannon index: P = 0.017 and Simpson: P = 0.035). This pattern was not found to be related to any other environmental factors besides altitude (P = 0.023) that we measured. Further, the study indicated that the assembly of fish communities in the Huangshui River primarily depends on stochastic ecological processes. These findings suggested that elevation was not the primary factor impacting the biodiversity patterns of fish in plateau rivers. In plateau rivers, spatial heterogeneity of fish community on elevation is mainly determined by stochastic processes under habitat fragmentation, rather than any other physicochemical environmental factors. The limitations of connectivity in the downstream channel of the river could be taken the mainly responsibility for stochastic processes of fish community in Huangshui River. Incorporating ecological processes in the eDNA approach holds great potential for future monitoring and evaluation of fish biodiversity and community assembly in plateau rivers.


Subject(s)
Biodiversity , Fishes , Rivers , Stochastic Processes , Animals , Fishes/classification , China
13.
Int J Equity Health ; 23(1): 97, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735959

ABSTRACT

BACKGROUND: Unequal access to primary healthcare (PHC) has become a critical issue in global health inequalities, requiring governments to implement policies tailored to communities' needs and abilities. However, the place-based facility dimension of PHCs is oversimplified in current healthcare literature, and formulating the equity-oriented PHC spatial planning remains challenging without understanding the multiple impacts of community socio-spatial dynamics, particularly in remote areas. This study aims to push the boundary of PHC studies one step further by presenting a nuanced and dynamic understanding of the impact of community environments on the uneven primary healthcare supply. METHODS: Focusing on Shuicheng, a remote rural area in southwestern China, multiple data are included in this village-based study, i.e., the facility-level healthcare statistics data (2016-2019), the statistical yearbooks, WorldPop, and Chinese GDP's spatial distribution data. We evaluate villages' PHC service capacity using the number of doctors and essential equipment per capita, which are the major components of China's PHC delivery. The indicators describing community environments are selected based on extant literature and China's planning paradigms, including town- and village-level factors. Gini coefficients and local spatial autocorrelation analysis are used to present the divergences of PHC capacity, and multilevel regression model and (heterogeneous) difference in difference model are used to examine the driving role of community environments and the dynamics under the policy intervention. RESULTS: Despite the general improvement, PHC inequalities remain significant in remote rural areas. The village's location, aging, topography, ethnic autonomy, and economic conditions significantly influence village-level PHC capacity, while demographic characteristics and healthcare delivery at the town level are also important. Although it may improve the hardware setting in village clinics (coef. = 0.350), the recent equity-oriented policy attempts may accelerate the loss of rural doctors (coef. = - 0.517). Notably, the associations between PHC and community environments are affected inconsistently by this round of policy intervention. The town healthcare centers with higher inpatient service capacity (coef. = - 0.514) and more licensed doctors (coef. = - 0.587) and nurses (coef. = - 0.344) may indicate more detrimental policy effects that reduced the number of rural doctors, while the centers with more professional equipment (coef. = 0.504) and nurses (coef. = 0.184) are beneficial for the improvement of hardware setting in clinics. CONCLUSIONS: The findings suggest that the PHC inequalities are increasingly a result of joint social, economic, and institutional forces in recent years, underlining the increased complexity of the PHC resource allocation mechanism. Therefore, we claim the necessity to incorporate a broader understanding of community orientation in PHC delivery, particularly the interdisciplinary knowledge of the spatial lens of community, to support its sustainable development. Our findings also provide timely policy insights for ongoing primary healthcare reform in China.


Subject(s)
Health Services Accessibility , Primary Health Care , Rural Health Services , Rural Population , China , Humans , Primary Health Care/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Rural Population/statistics & numerical data , Rural Health Services/statistics & numerical data , Health Policy , Physicians/supply & distribution , Physicians/statistics & numerical data , Healthcare Disparities , Equipment and Supplies/supply & distribution
14.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730872

ABSTRACT

Steel slag is a by-product of the steel industry and usually contains a high amount of f-CaO and f-MgO, which will result in serious soundness problems once used as a binding material and/or aggregates. To relieve this negative effect, carbonation treatment was believed to be one of the available and reliable methods. By carbonation treatment of steel slag, the phases of f-CaO and f-MgO can be effectively transformed into CaCO3 and MgCO3, respectively. This will not only reduce the expansive risk of steel slag to improve the utilization of steel slag further but also capture and store CO2 due to the mineralization process to reduce carbon emissions. In this study, based on the physical and chemical properties of steel slag, the carbonation mechanism, factors affecting the carbonation process, and the application of carbonated steel slag were reviewed. Eventually, the research challenge was also discussed.

15.
APMIS ; 132(7): 507-514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644557

ABSTRACT

LncRNAs play an important role in autoimmune diseases. The purpose of this study was to explore the role of lncRNA SNHG1 in systemic lupus erythematosus (SLE), and laid a theoretical foundation for the study of SLE. The basic clinical information of all subjects was first collected for statistical analysis, and SNHG1 expression in the serum of all subjects was detected by RT-qPCR. The value of SNHG1 in the diagnosis of SLE was assessed by ROC. The correlation between SNHG1 and each blood sample index was analyzed by Pearson correlation analysis. The role of SNHG1 in primary peripheral blood mononuclear cells (PBMCs) apoptosis was explored. SNHG1 expression is relatively upregulated in patients with SLE compared to healthy people. SNHG1 expression was positively correlated with SLEDAI score, IgG, CRP, and ESR, and negatively correlated with C3 and C4. ROC indicated that SNHG1 has the potential to assist in the diagnosis of SLE. PBMCs apoptosis in SLE was higher than that in control group, the knockdown and overexpression of SNHG1 could correspondingly inhibit and promote PBMCs apoptosis. SNHG1 has the potential to be a diagnosis marker for SLE and may be involved in regulating PBMCs apoptosis.


Subject(s)
Apoptosis , Biomarkers , Disease Progression , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , RNA, Long Noncoding , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , Biomarkers/blood , Female , Apoptosis/genetics , Leukocytes, Mononuclear/metabolism , Adult , Male , Middle Aged , Young Adult , ROC Curve
16.
Lupus ; 33(7): 675-684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634475

ABSTRACT

AIM: This study aimed to investigate the expression of H19 and its possible molecular mechanism in systemic lupus erythematosus (SLE). METHODS: The expression of H19 and miR-19b in serum and peripheral blood mononuclear cells (PBMCs) were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Receiver operator characteristic (ROC) curve was constructed to evaluate the diagnostic value of serum H19 in SLE. Pearson correlation coefficient was used to analyze the correlation between serum levels of H19 and miR-19b. Flow cytometry and Cell counting kit-8 (CCK-8) assay were performed to detect cell apoptosis and viability. The levels of pro-inflammatory and anti-inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter gene assay was conducted to verify the interaction between H19 and miR-19b. RESULTS: The expression of H19 and miR-19b in SLE group were up-regulated and down-regulated, respectively. Serum H19 has certain clinical diagnostic value in SLE. In in vitro studies, overexpression of H19 can significantly inhibit the viability of PBMCs and promote apoptosis and inflammatory response of PBMCs by interacting with miR-19b. CONCLUSIONS: The expression of H19 is upregulated in patients with SLE and plays a role in cell function and inflammation by targeting miR-19b in PBMCs, which may be one of the pathological mechanisms of SLE.


Subject(s)
Apoptosis , Biomarkers , Disease Progression , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , MicroRNAs , RNA, Long Noncoding , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , RNA, Long Noncoding/blood , RNA, Long Noncoding/genetics , Female , Adult , MicroRNAs/blood , Leukocytes, Mononuclear/metabolism , Male , Biomarkers/blood , Up-Regulation , Middle Aged , Case-Control Studies , ROC Curve , Down-Regulation , Young Adult
17.
Talanta ; 274: 126068, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599119

ABSTRACT

Water is a fundamental element for life. The highly selective and sensitive sensing of water is always attractive for mankind in activities such as physiological processes study and extraterrestrial life exploration. Fluorescent MOFs with precise channels and functional groups might specifically recognize water molecules with hydrogen-bond interaction or coordination effects and work as water sensors. As a proof of concept, herein, an amino functionalized Zn-MOF (named as complex 1) with pores that just right for water molecules to form hydrogen bond bridges is revealed for highly selective and sensitive fluorescent sensing of water. The single-crystal X-ray diffraction analysis indicates that the 3D framework of complex 1 is functionalized with free amino groups in the channels. Hydrogen bonds formed in the channel along b-axis as water bridges to connect two adjacent NH2bdc ligands and result in the restriction of intramolecular motions (RIM) which could responsible for the selective turn-on fluorescence response to water. Complex 1 exhibits high sensitive to trace amount of water in organic solvents and could be used for water detection in a wide range water contents. Take advantages of complex 1, portable sensors (complex 1@PMMA) were prepared and used in the highly sensitive water sensing.

18.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592380

ABSTRACT

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Subject(s)
Ecosystem , Wetlands , Salt-Tolerant Plants , RNA, Ribosomal, 16S , Archaea/genetics , Poaceae , Soil , Fungi/genetics
19.
J Imaging Inform Med ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627269

ABSTRACT

Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.

20.
Environ Sci Ecotechnol ; 20: 100409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572085

ABSTRACT

Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.

SELECTION OF CITATIONS
SEARCH DETAIL