Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 165
1.
Cancers (Basel) ; 16(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38730580

BACKGROUND: The immune checkpoint blockade remains obscure in osteosarcoma (OS). We aim to explore the clinical significance of soluble immune checkpoint (ICK)-related proteins in OS. METHODS: We profiled 14 soluble ICK-related proteins (BTLA, GITR, HVEM, IDO, LAG-3, PD-1, PD-L1, PD-L2, TIM-3, CD28, CD80, CD137, CD27, and CTLA-4) in the plasma of 76 OS patients and matched controls. We evaluated the associations between the biomarkers and the risk of OS using unconditional multivariate logistic regression. The multivariate Cox model was utilized to develop the prediction model of OS. Immune subtypes were established from the identified biomarkers. Transcriptional data from GEO were analyzed to elucidate potential mechanisms. RESULTS: We found that sTIM3, sCD137, sIDO, and sCTLA4 were significantly correlated with OS risk (all p < 0.05). sBTLA, sPDL2, and sCD27 were significantly associated with the risk of lung metastasis, whereas sBTLA and sTIM3 were associated with the risk of disease progression. We also established an immune subtype based on sBTLA, sPD1, sTIM3, and sPDL2. Patients in the sICK-type2 subtype had significantly decreased progression-free survival (PFS) and lung metastasis-free survival (LMFS) than those in the sICK-type1 subtype (log-rank p = 2.8 × 10-2, 1.7 × 10-2, respectively). Interestingly, we found that the trend of LMFS and PFS in the subtypes of corresponding ICK genes' expression was opposite to the results in the blood (log-rank p = 2.6 × 10-4, 9.5 × 10-4, respectively). CONCLUSION: Four soluble ICK-related proteins were associated with the survival of OS patients. Soluble ICK-related proteins could be promising biomarkers for the outcomes and immunotherapy of OS patients, though more research is warranted.

2.
Rheumatol Adv Pract ; 8(2): rkae038, 2024.
Article En | MEDLINE | ID: mdl-38605731

Objectives: Central nervous system vasculitis (CNSV) is a rare disease. High-resolution vessel wall imaging (HR-VWI) enables the identification of inflammatory changes within the vessel wall. Few studies have applied HR-VWI to assess CNSV in children. This study delves into the utility of HR-VWI for diagnosing and treating CNSV in children, with the aim of enhancing clinical diagnosis and efficacy evaluation. Methods: Imaging data were acquired from children who underwent HR-VWI examinations. The study meticulously analysed clinical data and laboratory tests to discern the characteristics and distribution patterns of diverse vasculitis forms. Results: In children, CNSV mainly involves medium vessels with grade 1 and 2 stenosis (grade 4 stenosis is rare), and the imaging features generally show centripetal and moderate enhancement, suggesting that this feature is specific for the diagnosis of CNSV. High-grade stenosis, concentric enhancement and strong enhancement of the vasculature indicate more severe disease activity. Remarkably, HR-VWI proved to be significantly more sensitive than magnetic resonance angiography in detecting CNSV. Among the 13 cases subjected to imaging review, 8 demonstrated a reduction or resolution of vessel wall inflammation. In contrast, five patients exhibited worsening inflammation in the vessel wall. HR-VWI demonstrated that changes in vessel wall inflammation were closely correlated with changes in brain parenchymal lesions and symptoms. Conclusion: This study underscores the diagnostic value of HR-VWI in CNSV assessment and treatment monitoring, offering a quantitative evaluation of CNSV in children.

3.
Abdom Radiol (NY) ; 49(5): 1615-1625, 2024 May.
Article En | MEDLINE | ID: mdl-38652125

PURPOSE: To investigate the influence of deep learning reconstruction (DLR) on bladder MRI, specifically examination time, image quality, and diagnostic performance of vesical imaging reporting and data system (VI-RADS) within a prospective clinical cohort. METHODS: Seventy participants with bladder cancer who underwent MRI between August 2022 and February 2023 with a protocol containing standard T2-weighted imaging (T2WIS), standard diffusion-weighted imaging (DWIS), fast T2WI with DLR (T2WIDL), and fast DWI with DLR (DWIDL) were enrolled in this prospective study. Imaging quality was evaluated by measuring signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scoring. Additionally, the apparent diffusion coefficient (ADC) of bladder lesions derived from DWIS and DWIDL was measured and VI-RADS scoring was performed. Paired t-test or paired Wilcoxon signed-rank test were performed to compare image quality score, SNR, CNR, and ADC between standard sequences and fast sequences with DLR. The diagnostic performance for VI-RADS was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS: Compared to T2WIS and DWIS, T2WIDL and DWIDL reduced the acquisition time from 5:57 min to 3:13 min and showed significantly higher SNR, CNR, qualitative image quality score of overall image quality, image sharpness, and lesion conspicuity. There were no significant differences in ADC and AUC of VI-RADS between standard sequences and fast sequences with DLR. CONCLUSIONS: The application of DLR to T2WI and DWI reduced examination time and significantly improved image quality, maintaining ADC and the diagnostic performance of VI-RADS for evaluating muscle invasion in bladder cancer.


Deep Learning , Magnetic Resonance Imaging , Urinary Bladder Neoplasms , Humans , Prospective Studies , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Male , Female , Aged , Middle Aged , Magnetic Resonance Imaging/methods , Neoplasm Invasiveness/diagnostic imaging , Urinary Bladder/diagnostic imaging , Aged, 80 and over , Adult , Image Interpretation, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods
4.
Abdom Radiol (NY) ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642093

PURPOSE: To evaluate the role of the magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS) version 2018 features and clinical-pathological factors for predicting the prognosis of alpha-fetoprotein (AFP)-negative (≤ 20 ng/ml) hepatocellular carcinoma (HCC) patients, and to compare with other traditional staging systems. METHODS: We retrospectively enrolled 169 patients with AFP-negative HCC who received preoperative MRI and hepatectomy between January 2015 and August 2020 (derivation dataset:validation dataset = 118:51). A prognostic model was constructed using the risk factors identified via Cox regression analysis. Predictive performance and discrimination capability were evaluated and compared with those of two traditional staging systems. RESULTS: Six risk factors, namely the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade, were associated with recurrence-free survival. The prognostic model constructed using these factors achieved C-index of 0.705 and 0.674 in the derivation and validation datasets, respectively. Furthermore, the model performed better in predicting patient prognosis than traditional staging systems. The model effectively stratified patients with AFP-negative HCC into high- and low-risk groups with significantly different outcomes (p < 0.05). CONCLUSION: A prognostic model integrating the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade may serve as a valuable tool for refining risk stratification in patients with AFP-negative HCC.

5.
Cancer Imaging ; 24(1): 49, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38584289

BACKGROUND: The Vesical Imaging-Reporting and Data System (VI-RADS) has demonstrated effectiveness in predicting muscle invasion in bladder cancer before treatment. The urgent need currently is to evaluate the muscle invasion status after neoadjuvant chemotherapy (NAC) for bladder cancer. This study aims to ascertain the accuracy of VI-RADS in detecting muscle invasion post-NAC treatment and assess its diagnostic performance across readers with varying experience levels. METHODS: In this retrospective study, patients with muscle-invasive bladder cancer who underwent magnetic resonance imaging (MRI) after NAC from September 2015 to September 2018 were included. VI-RADS scores were independently assessed by five radiologists, consisting of three experienced in bladder MRI and two inexperienced radiologists. Comparison of VI-RADS scores was made with postoperative histopathological diagnosis. Receiver operating characteristic curve analysis (ROC) was used for evaluating diagnostic performance, calculating sensitivity, specificity, and area under ROC (AUC)). Interobserver agreement was assessed using the weighted kappa statistic. RESULTS: The final analysis included 46 patients (mean age: 61 years ± 9 [standard deviation]; age range: 39-70 years; 42 men). The pooled AUC for predicting muscle invasion was 0.945 (95% confidence interval (CI): 0.893-0.977) for experienced readers, and 0.910 (95% CI: 0.831-0.959) for inexperienced readers, and 0.932 (95% CI: 0.892-0.961) for all readers. At an optimal cut-off value ≥ 4, pooled sensitivity and specificity were 74.1% (range: 66.0-80.9%) and 94.1% (range: 88.6-97.7%) for experienced readers, and 63.9% (range: 59.6-68.1%) and 86.4% (range: 84.1-88.6%) for inexperienced readers. Interobserver agreement ranged from substantial to excellent between all readers (k = 0.79-0.92). CONCLUSIONS: VI-RADS accurately assesses muscle invasion in bladder cancer patients after NAC and exhibits good diagnostic performance across readers with different experience levels.


Urinary Bladder Neoplasms , Urinary Bladder , Male , Humans , Adult , Middle Aged , Aged , Urinary Bladder/diagnostic imaging , Urinary Bladder/pathology , Neoadjuvant Therapy , Retrospective Studies , Magnetic Resonance Imaging/methods , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
7.
JACS Au ; 4(2): 570-577, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38425933

Organic polymers based on the donor-acceptor structure are a promising class of efficient photocatalysts for solar fuel production. Among these polymers, poly(9,9-dioctylfluorene-alt-1,2,3-benzothiadiazole) (PFBT) consisting of fluorene donor and benzothiadiazole acceptor units has shown good photocatalytic activity when it is prepared into polymer dots (Pdots) in water. In this work, we investigate the effect of the chemical environment on the activity of photocatalysis from PFBT Pdots for hydrogen production. This is carried out by comparing the samples with various concentrations of palladium under different pH conditions and with different sacrificial electron donors (SDs). Moreover, a model compound 1,2,3-benzothiadiazole di-9,9-dioctylfluorene (BTDF) is synthesized to investigate the mechanism for protonation of benzothiadiazole and its kinetics in the presence of an organic acid-salicylic acid by cyclic voltammetry. We experimentally show that benzothiadiazole in BTDF can rapidly react with protons with a fitted value of 0.1-5 × 1010 M-1 s-1 which should play a crucial role in the photocatalytic reaction with a polymer photocatalyst containing benzothiadiazole such as PFBT Pdots for hydrogen production in acidic conditions. This work gives insights into why organic polymers with benzothiadiazole work efficiently for photocatalytic hydrogen production.

8.
iScience ; 27(3): 108891, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38384842

Biological age could be reflective of an individual's health status and aging degree. Limited estimations of biological aging based on physical examination data in the Chinese population have been developed to quantify the rate of aging. We developed and validated a novel aging measure (Balanced-AGE) based on readily available physical health examination data. In this study, a repeated sub-sampling approach was applied to address the data imbalance issue, and this approach significantly improved the performance of biological age (Balanced-AGE) in predicting all-cause mortality with a 10-year time-dependent AUC of 0.908 for all-cause mortality. This mortality prediction tool was found to be effective across different subgroups by age, sex, smoking, and alcohol consumption status. Additionally, this study revealed that individuals who were underweight, smokers, or drinkers had a higher extent of age acceleration. The Balanced-AGE may serve as an effective and generally applicable tool for health assessment and management among the elderly population.

9.
Nature ; 626(7997): 86-91, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297172

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

10.
Zhongguo Fei Ai Za Zhi ; 26(12): 957-960, 2024 Jan 02.
Article Zh | MEDLINE | ID: mdl-38163982

Ground-glass nodule (GGN) lung cancer often progresses slowly in clinical and there are few clinical studies on long-term follow-up of patients with operable GGN lung cancer treated with stereotactic body radiation therapy (SBRT). We present a successful case of GGN lung cancer treated with SBRT, but a new GGN was found in the lung adjacent to the SBRT target during follow-up. The nodule progressed rapidly and was confirmed as lung adenocarcinoma by surgical resection. No significant risk factors and related driving genes were found in molecular pathological findings and genetic tests. It deserves further study whether new GGN is related to the SBRT. This case suggests that the follow-up after SBRT should be vigilant against the occurrence of new rapidly progressive lung cancer in the target area and adjacent lung tissue.
.


Adenocarcinoma of Lung , Lung Neoplasms , Radiosurgery , Humans , Lung Neoplasms/pathology , Retrospective Studies , Adenocarcinoma of Lung/surgery , Lung/pathology
11.
Acad Radiol ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38199902

RATIONALE AND OBJECTIVES: To explore and compare the performance of LI-RADS® and radiomics from multiparametric MRI in predicting microvascular invasion (MVI) preoperatively in patients with solitary hepatocellular carcinoma (HCC)< 5 cm. METHODS: We enrolled 143 patients with pathologically proven HCC and randomly stratified them into training (n = 100) and internal validation (n = 43) cohorts. Besides, 53 patients were enrolled to constitute an independent test cohort. Clinical factors and imaging features, including LI-RADS and three other features (non-smooth margin, incomplete capsule, and two-trait predictor of venous invasion), were reviewed and analyzed. Radiomic features from four MRI sequences were extracted. The independent clinic-imaging (clinical) and radiomics model for MVI-prediction were constructed by logistic regression and AdaBoost respectively. And the clinic-radiomics combined model was further constructed by logistic regression. We assessed the model discrimination, calibration, and clinical usefulness by using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision-curve analysis respectively. RESULTS: Incomplete tumor capsule, corona enhancement, and radiomic features were related to MVI in solitary HCC<5 cm. The clinical model achieved AUC of 0.694/0.661 (training/internal validation). The single-sequence-based radiomic model's AUCs were 0.753-0.843/0.698-0.767 (training/internal validation). The combination model exhibited superior diagnostic performance to the clinical model (AUC: 0.895/0.848 [training/ internal validation]) and yielded an AUC of 0.858 in an independent test cohort. CONCLUSION: Incomplete tumor capsule and corona enhancement on preoperative MRI were significantly related to MVI in solitary HCC<5 cm. Multiple-sequence radiomic features potentially improve MVI-prediction-model performance, which could potentially help determining HCC's appropriate therapy.

12.
bioRxiv ; 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38260654

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

13.
Anal Chem ; 96(6): 2455-2463, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38285921

Single-nanoparticle studies often need one or a series of nanoparticle populations that are designed with differences in a nominally particular structural parameter to clarify the structure-activity relationship (SAR). However, the heterogeneity of various properties within any population would make it rather difficult to approach an ideal one-parameter control. In situ modification ensures the same nanoparticle to be investigated and also avoids complicating effects from the otherwise often needed ex situ operations. Herein, we apply electrochemical cycling to single platinum nanoparticles and optically examine their SAR. An electrocatalytic fluorescent microscopic method is established to evaluate the apparent catalytic activity of a number of single nanoparticles toward the oxygen reduction reaction. Meanwhile, dark-field microscopy with the substrate electrode under a cyclic potential control is found to be able to assess the electrochemically active surface area (ECSA) of single nanoparticles via induced chloride redox electrochemistry. Consequently, nanoparticles with drastically increased catalytic activity are discovered to have larger ECSAs upon potential regulation, and interestingly, there are also a few particles with decreased activity, as opposed to the overall trend, that all develop a smaller ECSA in the process. The deactivated nanoparticles against the overall enhancement effects of potential cycling are revealed for the first time. As such, the SAR of single nanoparticles when subjected to an in situ structural control is optically demonstrated.

14.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38227967

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

15.
Acad Radiol ; 31(4): 1367-1377, 2024 Apr.
Article En | MEDLINE | ID: mdl-37802671

RATIONALE AND OBJECTIVES: To develop and validate a nomogram based on intratumoral and peritumoral radiomics signatures for pretreatment prediction of distant metastasis-free survival (DMFS) in patients after neoadjuvant chemoradiotherapy (NCRT) with locally advanced rectal cancer (LARC). MATERIALS AND METHODS: This retrospective study included 230 patients (161 training cohort; 69 validation cohort) with LARC who underwent NCRT and surgery. Radiomics features were extracted on T2-weighted images from gross tumor volume (GTV) and volumes of 4-mm, 6-mm, and 8-mm peritumoral regions (PTV4, PTV6, and PTV8). The least absolute shrinkage and selection operator (LASSO)-Cox analysis were used for features selection and models construction. The performance of each model in predicting DMFS was evaluated by the Concordance index (C-index) and time-independent receiver operating characteristic curve (ROC). RESULTS: The PTV4 radiomics model demonstrated superior performance compared to the PTV6 and PTV8 radiomics models, with C-indexes of 0.750 and 0.703 in the training and validation cohorts, respectively. The nomogram was constructed by integrating the GTV radiomics signature, PTV4 radiomics signature, and relevant clinical characteristics, including CA19-9 level, clinical T stage, and clinical N stage. The nomogram achieved C-indexes of 0.831 and 0.748, with corresponding AUCs of 0.872 and 0.808 for 5-year DMFS in the training and validation cohorts, respectively. Kaplan-Meier analysis revealed that a cut-off value of 1.653 effectively stratified patients into high- and low-risk groups for DM (P < 0.001). CONCLUSION: The intra-peritumoral radiomics nomogram is a favorable tool for clinicians to develop personalized systemic treatment and intensive follow-up strategies to improve patient prognosis.


Neoplasms, Second Primary , Rectal Neoplasms , Humans , Neoadjuvant Therapy , Radiomics , Retrospective Studies , Magnetic Resonance Imaging , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Chemoradiotherapy
16.
Proc Natl Acad Sci U S A ; 120(52): e2310916120, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38117856

The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe3O4 nanoparticle migrates from the core of a SiO2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe3O4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.

17.
J Magn Reson Imaging ; 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37942838

BACKGROUND: Tertiary lymphoid structures (TLSs) have prognostic value in intrahepatic cholangiocarcinoma (ICC) patients. Noninvasive tool to preoperatively evaluate TLSs is still lacking. PURPOSE: To explore the association between TLSs status of ICC and preoperative MRI radiomics analysis. STUDY TYPE: Retrospective. SUBJECTS: One hundred and ninety-two patients with ICC, divided into training (T = 105), internal validation groups (V1 = 46), and external validation group (V2 = 41). SEQUENCE: Coronal and axial single-shot fast spin-echo T2-weighted, diffusion-weighted imaging, T1-weighted, and T1WI fat-suppressed spoiled gradient-recall echo LAVA sequence at 3.0 T. ASSESSMENT: The VOIs were drawn manually within the visible borders of the tumors using ITK-SNAP version 3.8.0 software in the axial T2WI, DWI, and portal vein phase sequences. Radiomics features were subjected to least absolute shrinkage and selection operator regression to select the associated features of TLSs and construct the radiomics model. Univariate and multivariate analyses were used to identify the clinical radiological variables associated with TLSs. The performances were evaluated by the area under the receiver operator characteristic curve (AUC). STATISTICAL TESTS: Logistic regression analysis, ROC and AUC, Hosmer-Lemeshow test, Kaplan-Meier method with the log-rank test, calibration curves, and decision curve analysis. P < 0.05 was considered statistically significant. RESULTS: The AUCs of arterial phase diffuse hyperenhancement were 0.59 (95% confidence interval [CI], 0.50-0.67), 0.52 (95% CI, 0.43-0.61), and 0.66 (95% CI, 0.52-0.80) in the T, V1, and V2 cohorts. The AUCs of Rad-score were 0.85 (95% CI, 0.77-0.92), 0.81 (95% CI, 0.67-0.94), and 0.84 (95% CI, 0.71-0.96) in the T, V1, and V2 cohorts, respectively. In cohort T, low-risk group showed significantly better median recurrence-free survival (RFS) than that of the high-risk group, which was also confirmed in cohort V1 and V2. DATA CONCLUSION: A preoperative MRI radiomics signature is associated with the intratumoral TLSs status of ICC patients and correlate significantly with RFS. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

18.
Eur J Pharmacol ; 961: 176194, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38000722

Sepsis-associated acute kidney injury (SA-AKI) has a high mortality rate and lacks effective targeted treatment. We applied lipopolysaccharides-induced injury models in human and mouse renal tubular epithelial cells, and at the same time, we selected a commonly used sedative drug, dexmedetomidine, to investigate its potential for renal protection. We found a significant increase in the expression level of HSP90, and the interaction with glutathione peroxidase 4 (GPX4) led to autophagic degradation of GPX4, triggering ferroptosis. Dexmedetomidine reduced the degradation of GPX4 by increasing the binding of KEAP1 and HSP90 in the cytoplasm. Therefore, lipid peroxidation and ferroptosis were reduced. Similarly, dexmedetomidine showed renal protective effects in C57BL/6J male mice with SA-AKI induced by cecal ligation. Our study reveals a new mechanism of renal tubular epithelial cell ferroptosis in SA-AKI treated with dexmedetomidine.


Acute Kidney Injury , Dexmedetomidine , Ferroptosis , Sepsis , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Kelch-Like ECH-Associated Protein 1 , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , NF-E2-Related Factor 2 , Sepsis/complications , Sepsis/drug therapy , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , HSP90 Heat-Shock Proteins
19.
Insights Imaging ; 14(1): 173, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37840098

PURPOSE: To predict the tertiary lymphoid structures (TLSs) status and recurrence-free survival (RFS) of intrahepatic cholangiocarcinoma (ICC) patients using preoperative CT radiomics. PATIENTS AND METHODS: A total of 116 ICC patients were included (training: 86; external validation: 30). The enhanced CT images were performed for the radiomics model. The logistic regression analysis was applied for the clinical model. The combined model was based on the clinical and radiomics models. RESULTS: A total of 107 radiomics features were extracted, and after being eliminated and selected, six features were combined to establish a radiomics model for TLSs prediction. Arterial phase diffuse hyperenhancement and AJCC 8th stage were combined to construct a clinical model. The combined (radiomics nomogram) model outperformed both the independent radiomics model and clinical model in the training cohort (AUC, 0.85 vs. 0.82 and 0.75, respectively) and was validated in the external validation cohort (AUC, 0.88 vs. 0.86 and 0.71, respectively). Patients in the rad-score no less than -0.76 (low-risk) group showed significantly better RFS than those in the less than -0.76 (high-risk) group (p < 0.001, C-index = 0.678). Patients in the nomogram score no less than -1.16 (low-risk) group showed significantly better RFS than those of the less than -1.16 (high-risk) group (p < 0.001, C-index = 0.723). CONCLUSIONS: CT radiomics nomogram could serve as a preoperative biomarker of intra-tumoral TLSs status, better than independent radiomics or clinical models; preoperative CT radiomics nomogram achieved accurate stratification for RFS of ICC patients, better than the postoperative pathologic TLSs status. CRITICAL RELEVANCE STATEMENT: The radiomics nomogram showed better performance in predicting TLSs than independent radiomics or clinical models and better prognosis stratification than postoperative pathologic TLSs status in ICC patients, which may facilitate identifying patients benefiting most from surgery and subsequent immunotherapy. KEY POINTS: • The combined (radiomics nomogram) model consisted of the radiomics model and clinical model (arterial phase diffuse hyperenhancement and AJCC 8th stage). • The radiomics nomogram showed better performance in predicting TLSs than independent radiomics or clinical models in ICC patients. • Preoperative CT radiomics nomogram achieved more accurate stratification for RFS of ICC patients than the postoperative pathologic TLSs status.

20.
Eur J Radiol ; 168: 111146, 2023 Nov.
Article En | MEDLINE | ID: mdl-37832198

OBJECTIVES: The purpose of this study was to establish a model for predicting the prognosis of patients with microvascular invasion (MVI)-negative hepatocellular carcinoma (HCC) based on qualitative and quantitative analyses of Gd-EOB-DTPA magnetic resonance imaging (MRI). MATERIALS AND METHODS: Consecutive patients with MVI-negative HCC who underwent preoperative Gd-EOB-DTPA MRI between January 2015 and December 2019 were retrospectively enrolled.In total, 122 patients were randomly assigned to the training and validation groups at a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed to identify significant clinical parameters and MRI features, including quantitative and qualitative parameters associated with prognosis, which were incorporated into a predictive nomogram. The end-point of this study was recurrence-free survival. Outcomes were compared between groups using the Kaplan-Meier method with the log-rank test. RESULTS: During a median follow-up period of 58.86 months, 38 patients (31.15 %) experienced recurrence. Multivariate analysis revealed that lower relative enhancement ratio (RER), hepatobiliary phase hypointensity without arterial phase hyperenhancement, Liver Imaging Reporting and Data System category, mild-moderate T2 hyperintensity, and higher aspartate aminotransferase levels were risk factors associated with prognosis and then incorporated into the prognostic model. C-indices for training and validation groups were 0.732 and 0.692, respectively. The most appropriate cut-off value for RER was 1.197. Patients with RER ≤ 1.197 had significantly higher postoperative recurrence rates than those with RER > 1.197 (p = 0.004). CONCLUSION: The model integrating qualitative and quantitative imaging parameters and clinical parameters satisfactorily predicted the prognosis of patients with MVI-negative HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/blood supply , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/blood supply , Prognosis , Retrospective Studies , Contrast Media , Gadolinium DTPA , Magnetic Resonance Imaging/methods
...