Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 879
1.
Neural Regen Res ; 20(3): 845-857, 2025 Mar 01.
Article En | MEDLINE | ID: mdl-38886957

JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 µM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 µM) promoted nuclear translocation of ß-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the ß-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.

2.
Microorganisms ; 12(6)2024 May 27.
Article En | MEDLINE | ID: mdl-38930465

The gut microbiota plays a pivotal role in upholding intestinal health, fostering intestinal development, fortifying organisms against pathogen intrusion, regulating nutrient absorption, and managing the body's lipid metabolism. However, the influence of different cultivation modes on the growth indices and intestinal microbes of Salmo trutta fario remains underexplored. In this study, we employed high-throughput sequencing and bioinformatics techniques to scrutinize the intestinal microbiota in three farming modes: traditional pond aquaculture (TPA), recirculating aquaculture (RA), and flow-through aquaculture (FTA). We aimed to assess the impact of different farming methods on the water environment and Salmo trutta fario's growth performance. Our findings revealed that the final weight and weight gain rate in the FTA model surpassed those in the other two. Substantial disparities were observed in the composition, relative abundance, and diversity of Salmo trutta fario gut microbiota under different aquaculture modes. Notably, the dominant genera of Salmo trutta fario gut microbiota varied across farming modes: for instance, in the FTA model, the most prevalent genera were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%), while, under RA farming, they were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxoactor (6.62%). In the TPA model, dominant genera in the gut microbiota included Anaeromyxobacter (8.72%), Bacteroidetes_vadinHA17 (8.30%), and Geobacter (12.54%). From a comparative standpoint, the genus-level composition of the gut microbiota in the RA and TPA models exhibited relative similarity. The gut microbiota in the FTA model showcased the most intricate functional diversity, while TPA farming displayed a more intricate interaction pattern with the gut microbiota. Transparency, pH, dissolved oxygen, conductivity, total dissolved solids, and temperature emerged as pivotal factors influencing Salmo trutta fario gut microbiota under diverse farming conditions. These research findings offer valuable scientific insights for fostering healthy aquaculture practices and disease prevention and control measures for Salmo trutta fario, holding substantial significance for the sustainable development of the cold-water fish industry in the Qinghai-Tibet Plateau.

4.
J Neurosci Nurs ; 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38884465

ABSTRACT: BACKGROUND: Idiopathic intracranial hypertension (IIH) is a neurological disorder characterized by elevated intracranial pressure, affecting predominantly obese women of childbearing age. Early recognition and comprehensive management are vital for preventing severe complications, particularly vision loss. METHODS: This study reports a case of a 27-year-old woman who presented with chronic headaches and blurred vision. Notable findings included headaches that were intensified upon waking and exacerbated by activities that elevated intracranial pressure. The patient also reported nausea, vomiting, transient visual obscurations, and pulsatile tinnitus. After a clinical examination, she was given a diagnosis of IIH. RESULTS: The patient underwent a lumbar-peritoneal shunt procedure to alleviate her symptoms in conjunction with medication treatment. This case study highlights the importance of a multidisciplinary approach in diagnosing and treating IIH. In particular, weight management emerged as a crucial preventive measure against IIH recurrence. CONCLUSION: A multidisciplinary team strategy can enhance outcomes and quality of life, accentuating the need for continued research into IIH recurrence, treatments, and wider implications.

5.
Virus Res ; 346: 199412, 2024 Aug.
Article En | MEDLINE | ID: mdl-38838820

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.


African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Epitope Mapping , Epitopes, B-Lymphocyte , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Animals , Antibodies, Viral/immunology , Swine , African Swine Fever/immunology , African Swine Fever/virology , Mice , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Mice, Inbred BALB C
6.
Coron Artery Dis ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767051

BACKGROUND: Previous reports have suggested that coronary computed tomography angiography (CCTA)-based radiomics analysis is a potentially helpful tool for assessing vulnerable plaques. We aimed to investigate whether coronary radiomic analysis of CCTA images could identify vulnerable plaques in patients with stable angina pectoris. METHODS: This retrospective study included patients initially diagnosed with stable angina pectoris. Patients were randomly divided into either the training or test dataset at an 8 : 2 ratio. Radiomics features were extracted from CCTA images. Radiomics models for predicting vulnerable plaques were developed using the support vector machine (SVM) algorithm. The model performance was assessed using the area under the curve (AUC); the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance using the two cohorts. RESULTS: A total of 158 patients were included in the analysis. The SVM radiomics model performed well in predicting vulnerable plaques, with AUC values of 0.977 and 0.875 for the training and test cohorts, respectively. With optimal cutoff values, the radiomics model showed accuracies of 0.91 and 0.882 in the training and test cohorts, respectively. CONCLUSION: Although further larger population studies are necessary, this novel CCTA radiomics model may identify vulnerable plaques in patients with stable angina pectoris.

7.
Mol Neurobiol ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767837

Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO-). We recently developed a new ONOO--triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO-. ONOO- scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO- reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for developing multi-functional compounds to treat ischemic stroke.

8.
ACS Appl Mater Interfaces ; 16(22): 29453-29465, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38803999

Due to its appealing characteristics, molybdenum disulfide (MoS2) presents a promising avenue for the exploration of lubrication protection materials in high-energy irradiation scenarios. Herein, we present a comprehensive investigation into the defect behavior of multilayer MoS2 under argon (Ar) atom irradiation leveraging molecular dynamics simulations. We have demonstrated the energy shifts and structural evolution in MoS2 upon irradiation, including the emergence of Frenkel defects and intricate defect clusters. The structural damage exhibits an initial increase followed by a subsequent decrease as the incident kinetic energy increases, ultimately peaking at 2.5 keV. Moreover, we investigated the effect of postannealing on defect recovery and conducted the uniaxial tensile and interlayer shearing simulation in order to provide valuable insights for the defect evolution and its impact on mechanical and tribological properties. Furthermore, we have proposed the optimal annealing temperature. The current study reveals the atomic mechanisms underlying irradiation-induced damage on the structural integrity and mechanical performance of MoS2, thereby providing crucial guidance for its vital application in nuclear reactors and aerospace industries.

9.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809284

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Animals , Antibodies, Monoclonal/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine , African Swine Fever/diagnosis , African Swine Fever/immunology , African Swine Fever/virology , Mice , Capsid Proteins/immunology , Capsid Proteins/genetics , Mice, Inbred BALB C , Sensitivity and Specificity , Epitopes/immunology
10.
J Cancer ; 15(10): 2971-2980, 2024.
Article En | MEDLINE | ID: mdl-38706916

BACKGROUND: Meta analysis was adopted to investigate the correlation between messenger ribonucleic acid (mRNA) expression and clinicopathological features of breast cancer (BC). METHODS: English databases, PubMed, Web of Science, Embase, and The Cochrane Library, etc., were searched using a computer. The time range of retrieval was set to be from the establishment of the database to December 2023. The search terms were set as "mRNA", "Breast cancer", "Pathology", "Clinicopathological characteristics", etc. The literatures were screened in line with the inclusion and exclusion criteria, and the data was extracted for analysis by Revman5.3. RESULTS: Finally, 5 suitable included literatures were selected, including 969 patients. The analysis results were found to reveal a significant association between mRNA expression and BC grading (OR = 0.11, 95% CI = 0.04-0.30, Z = 4.26, P<0.0001); a significant correlation was observed between mRNA expression and BC staging (OR = 0.19, 95% CI = 0.05-0.65, Z = 2.65, P = 0.008<0.05); no correlation was found between mRNA expression and menstrual status of BC patients (OR = 0.63, 95% CI = 0.22-1.78, Z = 0.88, P = 0.38>0.05); a correlation was identified between mRNA expression and tumor size in BC (OR = 0.48, 95% CI = 0.24-0.99, Z = 2.00, P = 0.05). In the Discussion section, this study, comprising 10 research studies, aimed to explore the correlation between messenger ribonucleic acid and the clinical pathological features of BC. staging and grading of BC, a certain correlation with tumor size, and no correlation with the menstrual status of BC patients.

11.
Mol Cancer Ther ; 23(6): 766-779, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38592383

Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.


Aurora Kinase A , Everolimus , Proto-Oncogene Proteins c-myc , Xenograft Model Antitumor Assays , Humans , Animals , Aurora Kinase A/antagonists & inhibitors , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Everolimus/pharmacology , Everolimus/pharmacokinetics , Everolimus/administration & dosage , Cell Line, Tumor , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Arch Oral Biol ; 163: 105982, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678878

OBJECTIVES: To investigate the importance of fatty acid oxidation (FAO)-related genes in predicting the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). METHODS: The FAO-related gene prognostic model was established employing Cox regression analyses, during which accuracy and sensitivity of the gene model were evaluated in The Cancer Genome Atlas (TCGA) internal testing and Gene Expression Omnibus (GEO) external validation cohorts. Ultimately, hub genes were identified among 13 model genes using STRING and Cytoscape, with preliminary validation carried out through immunohistochemistry. RESULTS: The model, which comprised 13 genes (ABCD2, ACAA1, ACACB, AKT1, CNR1, CPT1C, CROT, ECHDC2, ETFA, HADHB, IRS2, LONP2, and SLC25A17), was established. On the basis of the median risk score, the two cohorts were grouped into low-and high-risk groups in the subsequent test and validation, and the former exhibited significantly higher survival rates than the latter. Nomograms were established based on prognostic factors, including stage and risk score, and individualized for the prediction of HNSCC patients. Ultimately, immunohistochemical staining showed that ACAA1 and HADHB were significantly under-expressed in HNSCC, with a favorable prognosis associated with low HADHB and high ACAA1. CONCLUSIONS: The gene prognostic model has illustrated promising capability in predicting the prognosis, and ACAA1 and HADHB might serve as potential therapeutic biomarkers for HNSCC patients.


Biomarkers, Tumor , Fatty Acids , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Immunohistochemistry , Nomograms , Oxidation-Reduction , Prognosis , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
13.
Int J Biol Macromol ; 268(Pt 1): 131695, 2024 May.
Article En | MEDLINE | ID: mdl-38642684

Due to the absence of effective vaccine and treatment, African swine fever virus (ASFV) control is entirely dependent on accurate and early diagnosis, along with culling of infected pigs. The B646L/p72 is the major capsid protein of ASFV and is an important target for developing a diagnostic assays and vaccines. Herein, we generated a monoclonal antibody (mAb) (designated as 2F11) against the trimeric p72 protein, and a blocking ELISA (bELISA) was established for the detection of both genotype I and II ASFV antibodies. To evaluate the performance of the diagnostic test, a total of 506 porcine serum samples were tested. The average value of percent of inhibition (PI) of 133 negative pig serum was 8.4 % with standard deviation (SD) 6.5 %. Accordingly, the cut-off value of the newly established method was set at 28 % (mean + 3SD). Similarly, a receiver operating characteristic (ROC) was applied to determine the cut off value and the p72-bELISA exhibited a sensitivity of 100 % and a specificity of 99.33 % when the detection threshold was set at 28 %. The bELISA was also able to specifically recognize anti-ASFV sera without cross-reacting with other positive serums for other major swine pathogens. Moreover, by designing a series of overlapped p72 truncated proteins, the linear B cell epitope recognized by 2F11 mAb was defined to be 283NSHNIQ288. Amino acid sequence comparison revealed that the amino acid sequence 283NSHNIQ288 is highly conserved between different ASFV isolates. Our findings indicate that the newly established mAb based blocking ELISA may have a great potential in improving the detection of ASFV antibodies and provides solid foundation for further studies.


African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Animals , African Swine Fever Virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Epitopes, B-Lymphocyte/immunology , Capsid Proteins/immunology , African Swine Fever/immunology , African Swine Fever/diagnosis , African Swine Fever/virology , Amino Acid Sequence , Epitope Mapping
14.
ACS Chem Neurosci ; 15(11): 2223-2232, 2024 06 05.
Article En | MEDLINE | ID: mdl-38634698

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.


Coenzyme A Ligases , Ferroptosis , Infarction, Middle Cerebral Artery , Ischemic Postconditioning , Ketone Bodies , Neuroprotection , Ferroptosis/physiology , Animals , Rats , Ischemic Postconditioning/methods , Ketone Bodies/metabolism , Male , Coenzyme A Ligases/metabolism , Neuroprotection/physiology , Rats, Sprague-Dawley , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Mice , Neuroprotective Agents/pharmacology , Ischemic Stroke/metabolism , Stroke/metabolism , Neurons/metabolism
15.
Huan Jing Ke Xue ; 45(5): 3069-3077, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629567

Microplastic pollution in the soil environment has received extensive attention, but the effects of different land use patterns on the sub-watershed scale on soil microplastic pollution are poorly understood. The Luoshijiang sub-watershed in the north of Erhai Lake was selected as the research object, and the characteristics of microplastic pollution in farmland, riparian zone, grassland, and woodland soils were analyzed. The pollution risks of microplastics in the four types of soil were assessed using the polymer risk index method, and the effects of land use patterns on the distribution and risk of microplastic pollution were further explored. The results showed that:① The abundance of microplastics in the soil of the Luoshijiang sub-watershed ranged from 220 to 1 900 n·kg-1, and the average abundance was (711 ± 55) n·kg-1. The main polymer types were polyester (PES, 32.52%) and polyethylene terephthalate (PET, 21.95%). The particle size of microplastics was concentrated in the range of 0.5-2 mm (61.89%). Fiber was the main shape of microplastics (>75%), and the dominant color was transparent (58.50%). ② Land use patterns determined the abundance and pollution characteristics of soil microplastics in the Luoshijiang sub-watershed. A significantly higher abundance of microplastics was found in the soil of farmland[(885 ± 95) n·kg-1] and riparian zone[(837 ± 155) n·kg-1], which had stronger intensities of human activity, than that in woodland soil[(491 ± 53) n·kg-1] (P<0.05). Film and fragment microplastics mainly occurred in farmland soil, which also had the largest number of polymer types and the most abundant colors. ③ The risk index level of microplastics (Level Ⅲ) in the soil of farmland was higher than that of the other three land use patterns (Level Ⅰ). This research indicated that the higher the intensity of human activities of a sub-watershed was, the more complex the occurrence characteristics of soil microplastics, the richer the types of polymers, and the higher the potential pollution risks would be. Therefore, it is necessary to strengthen the control of soil microplastic pollution in farmland.

16.
Int J Biometeorol ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625430

Fine particulate matter (PM2.5) is a risk factor of cardiovascular disease. Associations between PM2.5 compositions and cardiovascular disease are a point of special interest but inconsistent. This study aimed to explore the cardiovascular effects of heavy metal(loid) compositions in PM2.5. Data for mortality, air pollutants and meteorological factors in Anyang, China from 2017 to 2021 were collected. Heavy metal(loid) in PM2.5 were monitored and examined monthly. A Case-crossover design was applied to the estimated data set. The interquartile range increase in cadmium (Cd), antimony (Sb) and arsenic (As) at lag 1 was associated with increment of 8.1% (95% CI: 3.3, 13.2), 4.8% (95% CI: 0.2, 9.5) and 3.5% (95% CI: 1.1, 6.0) cardiovascular mortality. Selenium in lag 2 was inversely associated with cerebrovascular mortality (RR = 0.920 95% CI: 0.862, 0.983). Current-day exposure of aluminum was positively associated with mortality from ischemic heart disease (RR = 1.083 95% CI: 1.001, 1.172). Stratified analysis indicated sex, age and season modified the cardiovascular effects of As (P < 0.05). Our study reveals that heavy metal(loid) play key roles in adverse effects of PM2.5. Cd, Sb and As were significant risk factors of cardiovascular mortality. These findings have potential implications for accurate air pollutants control and management to improve public health benefits.

17.
Sci Total Environ ; 924: 171703, 2024 May 10.
Article En | MEDLINE | ID: mdl-38490424

Healthcare-associated infections (HAIs) pose significant risks to pediatric patients in outpatient settings. To prevent HAIs, understanding the sources and transmission routes of pathogenic microorganisms is crucial. This study aimed to identify the sources of opportunistic bacterial pathogens (OBPs) in pediatric outpatient settings and determine their transmission routes. Furthermore, assessing the public health risks associated with the core OBPs is important. We collected 310 samples from various sites in pediatric outpatient areas and quantified the bacteria using qPCR and CFU counting. We also performed 16S rRNA gene and single-bacterial whole-genome sequencing to profile the transmission routes and antibiotic resistance characteristics of OBPs. We observed significant variations in microbial diversity and composition among sampling sites in pediatric outpatient settings, with active communication of the microbiota between linked areas. We found that the primary source of OBPs in multi-person contact areas was the hand surface, particularly in pediatric patients. Five core OBPs, Staphylococcus epidermidis, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus oralis, were mainly derived from pediatric patients and spread into the environment. These OBPs accumulated at multi-person contact sites, resulting in high microbial diversity in these areas. Transmission tests confirmed the challenging spread of these pathogens, with S. epidermidis transferring from the patient's hand to the environment, leading to an increased abundance and emergence of related strains. More importantly, S. epidermidis isolated from pediatric patients carried more antibiotic-resistance genes. In addition, two strains of multidrug-resistant A. baumannii were isolated from both a child and a parent, confirming the transmission of the five core OBPs centered around pediatric patients and multi-person contact areas. Our results demonstrate that pediatric patients serve as a significant source of OBPs in pediatric outpatient settings. OBPs carried by pediatric patients pose a high public health risk. To effectively control HAIs, increasing hand hygiene measures in pediatric patients and enhancing the frequency of disinfection in multi-person contact areas remains crucial. By targeting these preventive measures, the spread of OBPs can be reduced, thereby mitigating the risk of HAIs in pediatric outpatient settings.


Anti-Bacterial Agents , Cross Infection , Humans , Child , RNA, Ribosomal, 16S , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Staphylococcus epidermidis , Public Health , Microbial Sensitivity Tests
18.
Chin J Dent Res ; 27(1): 101-109, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38546525

OBJECTIVE: To explore potential pathogenic processes and possible treatments using unbiased and reliable bioinformatic tools. METHODS: Gene expression profiles of control and hepatocyte growth factor (HGF) samples were downloaded from CNP0000995. Analysis of differentially expressed genes (DEGs) was conducted using R software (version 4.2.1, R Foundation, Vienna, Austria). Functional enrichment analyses were performed using the Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) databases, then the proteinprotein interaction (PPI) network was constructed to screen the top 10 hub genes. Finally, five genes related to cell junctions were selected to build gene-miRNA interactions and predict small-molecule drugs. RESULTS: A total of 342 downregulated genes and 188 upregulated genes were detected. Candidate pathways include the extracellular matrix (ECM) receptor interaction pathway, the TGF-ß signalling pathway and the cell adhesion molecule (CAM) pathway, which were discovered through KEGG and GSEA enrichment studies. GO analyses revealed that these DEGs were significantly enriched in cell adhesion, the adherens junction and focal adhesion. Five hub genes (CDH1, SNAP25, RAC2, APOE and ITGB4) associated with cell adhesion were identified through PPI analysis. Finally, the gene-miRNA regulatory network identified three target miRNAs: hsa-miR-7110-5p, hsa-miR-149-3p and hsa-miR-1207-5p. Based on the gene expression profile, the small-molecule drugs zebularine, ecuronium and prostratin were selected for their demonstrated binding activity when docked with the mentioned molecules. CONCLUSION: This study offered some novel insights into molecular pathways and identified five hub genes associated with cell adhesion. Based on these hub genes, three potential therapeutic miRNAs and small-molecule drugs were predicted, which are expected to provide guidance for the treatment of patients with HGF.


Fibromatosis, Gingival , MicroRNAs , Humans , MicroRNAs/genetics , Cell Adhesion , Focal Adhesions
19.
Int Immunopharmacol ; 130: 111786, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38447415

G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aß1-42). RNA-sequencing data analysis showed that Aß1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aß1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aß1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.


Alzheimer Disease , Cognitive Dysfunction , Nerve Tissue Proteins , Receptors, G-Protein-Coupled , Septum of Brain , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Up-Regulation , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Septum of Brain/metabolism , Mice, Inbred C57BL
20.
Plant Physiol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466216

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KRP (KIP-RELATED PROTEIN) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with SHOOT MERISTEMLESS (STM), which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.

...