Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Org Lett ; 26(17): 3575-3580, 2024 May 03.
Article En | MEDLINE | ID: mdl-38636450

We introduce switchable chemoselectivity strategies based on the hydrazone phosphaketene intermediate to synthesize three classes of 1,2,4-diazaphosphol derivatives. First, the five-membered heterocyclic P and O anion intermediates acted as nucleophilic agents in the selective construction of C-P and C-O bonds. Second, the phosphinidene served as a phosphorus synthon, allowing for the formation of C-P and C-N bonds. Finally, a stepwise mechanism, supported by DFT calculations, was invoked to explain the reaction selectivity.

2.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38527200

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

3.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38463028

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Deubiquitinating Enzymes/genetics , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases
4.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38093609

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

5.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-37970704

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

6.
MycoKeys ; 99: 1-24, 2023.
Article En | MEDLINE | ID: mdl-37588799

While investigating the diversity of lignicolous fungi in Yunnan Province, China, six fresh collections of Torulaceae were collected and identified based on morphological examination and phylogenetic analyses of combined LSU, ITS, SSU, tef1-α, and rpb2 sequence data. Two new species, viz. Neopodoconisyunnanensis and Torulasuae, and three new records, viz. T.canangae (new freshwater habitat record), T.masonii (new host record), and T.sundara (new freshwater habitat record) are reported. Detailed descriptions, illustrations, and a phylogenetic tree to show the placement of these species are provided.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 377-382, 2023 Apr.
Article Zh | MEDLINE | ID: mdl-37096508

OBJECTIVE: To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) . METHODS: Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze. RESULTS: The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data. CONCLUSION: Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.


Clinical Relevance , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , DNA Methylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Bone Marrow/metabolism , RNA, Messenger/metabolism , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
8.
ACS Appl Mater Interfaces ; 15(15): 19066-19074, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37036933

Lithium-sulfur batteries are considered a promising "beyond Li-ion" energy storage technology. Currently, the practical realization of Li-S batteries is plagued by rapid electrochemical failure of S cathodes due to aggravated polysulfide dissolution and shuttle in the conventional liquid ether-based electrolytes. A gel polymer electrolyte obtained by in situ polymerization of liquid electrolyte solvent at the cathode-electrolyte interface has been proven an effective strategy to prevent polysulfide shuttle. However, notably reduced polysulfide solubility in the gel electrolyte leads to enrichment of poorly conductive sulfide species, which hinders charge migration across the interface and therefore accounts for retarded polysulfide conversion and a low capacity/energy output of batteries. Here, we show that thioacetamide, as a cathode additive, inhibits interfacial polymerization of ether molecules while assisting dissolution of polysulfides and Li2S at the cathode/electrolyte interface. In this way, a layer of liquid, sulfide-soluble electrolyte is preserved between the highly gelled electrolyte and the S particle surface, avoiding interfacial sulfide accumulation and improving polysulfide conversion kinetics. A Li-S battery with the controllably solidified interface demonstrates, without adding other performance-boosting agents or catalysts, a high reversible capacity, a long cycle life, and a favorable rate performance, showing promises for the next-generation storage applications.

9.
Adv Mater ; 35(24): e2300350, 2023 Jun.
Article En | MEDLINE | ID: mdl-36990460

The uncontrollable dendrite growth and unstable solid electrolyte interphase have long plagued the practical application of Li metal batteries. Herein, a dual-layered artificial interphase LiF/LiBO-Ag is demonstrated that is simultaneously reconfigured via an electrochemical process to stabilize the lithium anode. This dual-layered interphase consists of a heterogeneous LiF/LiBO glassy top layer with ultrafast Li-ion conductivity and lithiophilic Li-Ag alloy bottom layer, which synergistically regulates the dendrite-free Li deposition, even at high current densities. As a result, Li||Li symmetric cells with LiF/LiBO-Ag interphase achieve an ultralong lifespan (4500 h) at an ultrahigh current density and area capacity (20 mA cm-2 , 20 mAh cm-2 ). LiF/LiBO-Ag@Li anodes are successfully applied in quasi-solid-state batteries, showing excellent cycling performances in symmetric cells (8 mA cm-2 , 8 mAh cm-2 , 5000 h) and full cells. Furthermore, a practical quasi-solid-state pouch cell coupling with a high-nickel cathode exhibits stable cycling with a capacity retention of over 91% after 60 cycles at 0.5 C, which is comparable or even better than that in liquid-state pouch cells. Additionally, a high-energy-density quasi-solid-state pouch cell (10.75 Ah, 448.7 Wh kg-1 ) is successfully accomplished. This well-orchestrated interphase design provides new guidance in engineering highly stable interphase toward practical high-energy-density lithium metal batteries.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122489, 2023 May 15.
Article En | MEDLINE | ID: mdl-36809738

FOX-7 (1,1-diamino-2,2-dinitroethene) as one of the widely studied insensitive high explosives exists five polymorphs (α, ß, γ, α', ε) whose crystal structures have been determined by XRD (X-rays Diffraction) and which are investigated by a density functional theory (DFT) approach in this work. The calculation results show that the GGA PBE-D2 method can reproduce the experimental crystal structure of FOX-7 polymorphs better. The calculated Raman spectra of FOX-7 polymorphs were compared in detail and fully with the experimental Raman spectra data and it was found that the calculated Raman spectra frequencies have an overall red-shift in middle band (800-1700 cm-1), and that the maximum deviation does not exceed 4 % (The maximum point is the mode of CC in plane bending). The high-temperature phase transform path (α â†’ ß â†’ Î³) and the high-pressure phase transform path (α â†’ α'→ε) can be well represented in the computational Raman spectra. In addition, crystal structure of ε-FOX-7 was performed up to 70 GPa to probe Raman spectra and vibrational properties. The results showed that the NH2 Raman shift is jittering with pressure (not smooth compared to other vibrational modes) and NH2 anti-symmetry-stretching appears red-shifted. The vibration of hydrogen mixes in all of other vibrational modes. This work shows that the dispersion-corrected GGA PBE method can reproduce the experimental structure, vibrational properties and Raman spectra very well.

11.
Sci Adv ; 9(5): eade5802, 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36724274

Safety concerns related to the abuse operation and thermal runaway are impeding the large-scale employment of high-energy-density rechargeable lithium batteries. Here, we report that by incorporating phosphorus-contained functional groups into a hydrocarbon-based polymer, a smart risk-responding polymer is prepared for effective mitigation of battery thermal runaway. At room temperature, the polymer is (electro)chemically compatible with electrodes, ensuring the stable battery operation. Upon thermal accumulation, the phosphorus-containing radicals spontaneously dissociate from the polymer skeleton and scavenge hydrogen and hydroxyl radicals to terminate the exothermic chain reaction, suppressing thermal generation at an early stage. With the smart risk-responding strategy, we demonstrate extending the time before thermal runaway for a 1.8-Ah Li-ion pouch cell by 100% (~9 hours) compared with common cells, creating a critical time window for safety management. The temperature-triggered automatic safety-responding strategy will improve high-energy-density battery tolerance against thermal abuse risk and pave the way to safer rechargeable batteries.

12.
Angew Chem Int Ed Engl ; 62(16): e202300384, 2023 Apr 11.
Article En | MEDLINE | ID: mdl-36840689

In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3 PO4 -rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of -20 °C.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 46-50, 2023 Jan 15.
Article Zh | MEDLINE | ID: mdl-36655663

OBJECTIVES: To study the significance of E-cadherin and the association between E-cadherin methylation status and prognosis in children with acute lymphoblastic leukemia (ALL) by examining the mRNA and protein expression of E-cadherin and its gene methylation status in bone marrow mononuclear cells of children with ALL. METHODS: The samples of 5 mL bone marrow blood were collected from 42 children with ALL who were diagnosed for the first time at diagnosis (pre-treatment group) and on day 33 of induction chemotherapy (post-treatment group). RT-qPCR, Western blot, and methylation-specific PCR were used to measure the mRNA and protein expression of E-cadherin and the methylation level of the E-cadherin gene. The changes in each index after induction chemotherapy were compared. RESULTS: The mRNA and protein expression levels of E-cadherin in the post-treatment group were significantly higher than those in the pre-treatment group (P<0.05), while the positive rate of E-cadherin gene methylation in the post-treatment group was significantly lower than that in the pre-treatment group (P<0.05). At the end of the test, the children with negative methylation had significantly higher overall survival rate and event-free survival rate than those with positive methylation (P<0.05). CONCLUSIONS: E-cadherin expression is associated with the development of ALL in children, and its decreased expression and increased methylation level may indicate a poor prognosis.


Cadherins , DNA Methylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Cadherins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , RNA, Messenger
14.
Int J Clin Exp Pathol ; 15(10): 388-402, 2022.
Article En | MEDLINE | ID: mdl-36381423

OBJECTIVES: The aim of this study was to explore the role of integrin alpha V (ITGAV) and the related long noncoding RNA-microRNA-messenger RNA competing endogenous RNA (lncRNA-miRNA-mRNA ceRNA) network in the development and prognosis of cancers, especially gastric cancer (GC), through bioinformatic analysis. METHODS: Pan-cancer and GC data were collected from the UCSC Xena website, and validation datasets were obtained from the Gene Expression Omnibus (GEO). R (version 3.6.3), GraphPad Prism 8, and SPSS 23.0 software were used to analyze data and prepare figures. RESULTS: The expression of ITGAV in tumor tissues was higher than that of normal tissues in ten cancer types. A lower expression of ITGAV in five tumors (CESC, LGG, LIHC, MESO, and STAD) predicted better patient prognosis. In GC, the mRNA and protein expression of ITGAV in tumor tissues was higher than that of normal tissues. Patients with high ITGAV expression had poor prognosis and clinical characteristics, including worse grades and more advanced stages. Patients with higher ITGAV expression had higher immune and stromal scores and lower purity (P<0.05). In addition, seven miRNAs were found that were negatively correlated with ITGAV expression through the website; high expression of these miRNAs indicated a better prognosis. Using this correlation, the authors built the lncRNA-miRNA-ITGAV ceRNA network, to predict the prognosis of GC. CONCLUSIONS: This study showed that ITGAV could be considered a prognostic factor for GC, and an lncRNA-miRNA-ITGAV ceRNA network was built to promote the exploration of the mechanism and prognosis of GC.

15.
Org Biomol Chem ; 20(25): 5139-5144, 2022 06 29.
Article En | MEDLINE | ID: mdl-35707997

Visible-light-promoted cyclization and aromatization of chalcones with 2-mercaptobenzimidazoles have been successfully developed to obtain diverse imidazo[2,1-b]thiazoles, and C-S and C-N bonds were constructed in one step. The reaction uses oxygen in the air as an oxidant, and the method does not need an external photocatalyst or a transition metal catalyst. The strategy features mild conditions, a simple system, readily accessible feedstocks, and a friendly environment. UV absorption spectroscopy and control experiments have shown that the reaction mechanism involves the formation of an electron-donor-acceptor (EDA) complex from thiolate anions and chalcones. In order to verify the mechanism, we studied the structure and HOMO/LUMO of the EDA complex by density functional theory (DFT) calculations. The results show that the π-π stacking between chalcones and 2-mercaptobenzimidazoles will cause a red shift of the UV absorption wavelength in the presence of Cs2CO3, and also provide a theoretical basis for the electron transfer of EDA complexes.


Chalcones , Benzimidazoles , Chalcones/chemistry , Cyclization , Light , Oxidants
16.
Chem Commun (Camb) ; 58(57): 7920-7923, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35758402

An artificial "salt-in-polymer" SEI, composed of poly-(1,3-dioxolane) and high-modulus fluorinated products generated from the in situ decomposition of Li salts, was constructed on the surface of Li-MSiOx particles. This LiF-rich SEI helps to maintain the structural integrity of Li-MSiOx particles and improves the Li storage reversibility of the Li-MSiOx anode.

17.
Angew Chem Int Ed Engl ; 61(25): e202203137, 2022 Jun 20.
Article En | MEDLINE | ID: mdl-35318790

As two stable hydrogen isotopes, protium and deuterium show magnified isotope effects in physicochemical properties due to the significantly varied atomic masses. In this work, aqueous electrolytes based on heavy water (D2 O) and light water (H2 O) were prepared to reveal the electrochemical isotope effects between the hydrogen isotopes. The covalent hydrogen-oxygen bond and intermolecular hydrogen bond in D2 O are much stronger than those in H2 O, making them thermodynamically more stable. Compared with the H2 O-based electrolyte, the D2 O-based electrolyte shows a broader electrochemical window, a higher percentage of coordinated water and a longer lifetime of hydrogen bond. Because of the above electrochemical isotope effects, the D2 O-based electrolyte shows high anodic stability against operation of high-voltage layered oxide cathode materials including LiCoO2 and LiNi0.8 Co0.1 Mn0.1 O2 , which enables long cycle life and favorable rate performance of aqueous Li-ion batteries.

18.
Angew Chem Int Ed Engl ; 61(21): e202116865, 2022 May 16.
Article En | MEDLINE | ID: mdl-35132759

Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.

19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(4): 595-602, 2021 Aug.
Article Zh | MEDLINE | ID: mdl-34494532

Objective To study the expression and significance of leucine-rich repeat-containing G-protein coupled receptor(LGR)5/6 in childhood acute lymphoblastic leukemia(ALL). Methods A total of 39 children who had ALL and achieved complete remission on day 33 after induction therapy were enrolled.The children before induction therapy were considered as the incipient group,and those who achieved complete remission on day 33 by induction therapy were considered as the remission group.According to the degree of risk,they were assigned into 3 groups:low-risk(n=16),intermediate-risk(n=9),and high-risk(n=14)groups.A total of 30 children with immune thrombocytopenia were taken as the control group.From each child in the incipient group,remission group,and control group,3 ml bone marrow sample was collected.Real-time fluorescent quantitative polymerase chain reaction was conducted to measure the mRNA expression of LGR5 and LGR6 in the blood cells of bone marrow.Western blot was employed to measure the protein expression of LGR5 and LGR6 in blood cells of bone marrow. Results Compared with the control(mRNA:1.541±0.409,protein:0.138±0.041)and remission(mRNA:1.418±0.324,protein:0.130±0.033)groups,the incipient group had significantly lower mRNA(0.850±0.279)and protein(0.083±0.027)expression of LGR5(PmRNA=0.000,Pprotein=0.000).Compared with the control(mRNA:0.928±0.373,protein:0.094±0.037)and remission(mRNA:0.886±0.390,protein:0.111±0.039)groups,the incipient group had significantly higher mRNA(2.444±1.160)and protein(0.298±0.088)expression of LGR6(PmRNA=0.000,Pprotein=0.000).In the incipient groups,low-risk children showed significantly higher mRNA(1.004±0.284)and protein(0.097±0.030)expression of LGR5 than the intermediate-risk children(mRNA:0.728±0.239,protein:0.071±0.022)and high-risk children(mRNA:0.752±0.222,protein:0.074±0.020)(PmRNA=0.012,Pprotein=0.016);low-risk children showed significantly lower mRNA(1.822±0.979)and protein(0.245±0.077)expression of LGR6 than the intermediate-risk children(mRNA:2.954±1.039,protein:0.338±0.081)and high-risk children(mRNA:2.827±1.165,protein:0.333±0.075)(PmRNA=0.016,Pprotein=0.004).In the remission groups,low-risk children showed significantly higher mRNA(1.597±0.329)and protein(0.150±0.035)expression of LGR5 than the intermediate-risk children(mRNA:1.277±0.288,protein:0.117±0.029)and high-risk children(mRNA:1.305±0.253,protein:0.116±0.023)(PmRNA=0.012,Pprotein=0.006);low-risk children showed significantly lower mRNA(0.662±0.334)and protein(0.089±0.034)expression of LGR6 than the intermediate-risk children(mRNA:1.066±0.273,protein:0.130±0.033)and high-risk children(mRNA:1.027±0.405,protein:0.126±0.038)(PmRNA=0.007,Pprotein=0.007). Conclusion The expression of LGR5 and LGR6 are closely related to the occurrence and risk of childhood ALL,but its mechanism needs further study.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Wnt Signaling Pathway , Child , Humans , Leucine , RNA, Messenger/genetics , Receptors, G-Protein-Coupled/genetics
20.
ACS Appl Mater Interfaces ; 13(38): 45651-45660, 2021 Sep 29.
Article En | MEDLINE | ID: mdl-34533920

Lithium-sulfur batteries (LSBs) suffer from sluggish reaction kinetics of sulfur-containing species and loss of soluble polysulfides (PSs) during cycling, especially in the case of liquid electrolytes. Here, we improve the kinetics of sulfur species by decorating Mo2C nanoparticles on carbon nanotubes (CNTs) as the host for sulfur active mass. In addition, by use of gel polymer electrolytes (GPEs) derived from in situ polymerization of 1,3-dioxolane (DOL) to mitigate the diffusion of PSs and improve the stability of Li stripping/plating. As a result, the sulfur cathodes are endowed with enhanced initial specific capacity and suppressed dissolution of sulfur species. The cells with CNT/Mo2C/S cathodes and GPE exhibit excellent electrochemical performance. The anodes cycled with GPE show remarkably enhanced lithium plating-stripping behavior. Benefitting from the synergistic effect, LSBs with higher energy density and improved durability are obtained, demonstrating a new approach for developing high-performance quasi-solid-state Li metal batteries.

...