Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 231
1.
Front Plant Sci ; 15: 1374228, 2024.
Article En | MEDLINE | ID: mdl-38803599

Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.

2.
Article En | MEDLINE | ID: mdl-38763155

BACKGROUND: The expected increase of dementia prevalence in the coming decades will mainly be in low-income and middle-income countries and in people with low socioeconomic status in high-income countries. This study aims to reduce dementia risk factors in underserved populations at high-risk using a coach-supported mobile health (mHealth) intervention. METHODS: This open-label, blinded endpoint, hybrid effectiveness-implementation randomised controlled trial (RCT) investigated whether a coach-supported mHealth intervention can reduce dementia risk in people aged 55-75 years of low socioeconomic status in the UK or from the general population in China with at least two dementia risk factors. The primary effectiveness outcome was change in cardiovascular risk factors, ageing, and incidence of dementia (CAIDE) risk score from baseline to after 12-18 months of intervention. Implementation outcomes were coverage, adoption, sustainability, appropriateness, acceptability, fidelity, feasibility, and costs assessed using a mixed-methods approach. All participants with complete data on the primary outcome, without imputation of missing outcomes were included in the analysis (intention-to-treat principle). This trial is registered with ISRCTN, ISRCTN15986016, and is completed. FINDINGS: Between Jan 15, 2021, and April 18, 2023, 1488 people (601 male and 887 female) were randomly assigned (734 to intervention and 754 to control), with 1229 (83%) of 1488 available for analysis of the primary effectiveness outcome. After a mean follow-up of 16 months (SD 2·5), the mean CAIDE score improved 0·16 points in the intervention group versus 0·01 in the control group (mean difference -0·16, 95% CI -0·29 to -0·03). 1533 (10%) invited individuals responded; of the intervention participants, 593 (81%) of 734 adopted the intervention and 367 (50%) of 734 continued active participation throughout the study. Perceived appropriateness (85%), acceptability (81%), and fidelity (79%) were good, with fair overall feasibility (53% of intervention participants and 58% of coaches), at low cost. No differences in adverse events between study arms were found. INTERPRETATION: A coach-supported mHealth intervention is modestly effective in reducing dementia risk factors in those with low socioeconomic status in the UK and any socioeconomic status in China. Implementation is challenging in these populations, but those reached actively participated. Whether this intervention will result in less cognitive decline and dementia requires a larger RCT with long follow-up. FUNDING: EU Horizon 2020 Research and Innovation Programme and the National Key R&D Programmes of China. TRANSLATION: For the Mandarin translation of the abstract see Supplementary Materials section.

3.
Crit Rev Biotechnol ; : 1-9, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719539

Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.

4.
Plants (Basel) ; 13(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38592870

Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.

5.
Adv Mater ; : e2403514, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613525

The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.

6.
Sci Total Environ ; 927: 172269, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583607

Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (δ2H and δ18O) and leaf δ13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this research emphasizes the critical influence of water source selection on plant succession dynamics while elucidating underlying mechanisms linking succession with plant water consumption.


Ecosystem , Ice Cover , Soil , Water , China , Soil/chemistry , Plants , Plant Leaves , Environmental Monitoring
7.
Polymers (Basel) ; 16(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38475284

Polyamide 66 was extensively utilized in various applications contributed by its excellent mechanical performance and outstanding durability. However, its high crystallinity renders it to have low transparency, which seriously limits its application in optical devices. Herein, a highly transparent polyamide (PA) 66-based copolymer was reported using 4,4'-diaminodicyclohexylmethane (PACM), adipic acid, and polyamide 66 salt as the reaction monomers. Wide-angle X-ray diffraction (WAXD) analysis revealed that the crystal phase of the synthesized PA66/PACM6 displayed a clear transition from α to γ as the PACM6 increased accompanied by a decreased intensity in the diffraction peak of the copolymer, whose transmittance was successfully adjusted reaching as high as 92.5% (at 550 nm) when the PACM6 was 40 wt%. Moreover, the copolymer with a higher content of PACM6 exhibited larger toughness. On the other hand, the biaxially oriented films of PA66/PACM6 (20 wt%) were also prepared, and it was found that the transparency of the PA66/PACM6 copolymer could be further enhanced via adjusting the stretching ratio of the film. Furthermore, the mechanical strength of the biaxially oriented PA66/PACM6 was also improved with the increase in the orientation degree in the stretching process, indicating that the physical properties of the transparent PA66 were significantly influenced by its alicyclic structure, and the introduction of PACM into PA66 was capable of effectively improving the optical and crystalline characteristics of PA66, revealing that the synthetic strategy has great potential for guiding the design and development of transparent polyamide materials.

8.
Chem Soc Rev ; 53(8): 4086-4153, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38465517

Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.


Biocompatible Materials , Elastomers , Regenerative Medicine , Tissue Engineering , Humans , Elastomers/chemistry , Biocompatible Materials/chemistry , Animals
9.
Acta Neurochir (Wien) ; 166(1): 35, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38270682

BACKGROUND: Presently, a consistent strategy for determining the stability of unruptured intracranial aneurysms (UIAs) in elderly patients is lacking, primarily due to the unique characteristics of this demographic. Our objective was to assess the risk factors contributing to aneurysm instability (growth or rupture) within the elderly population. METHODS: In this study, we compiled data from follow-up patients with UIAs spanning from November 2016 to August 2021. We specifically focused on patients aged ≥ 60 years. Clinical histories were gathered, and morphological parameters of aneurysms were measured. The growth of aneurysms was determined using the computer-assisted semi-automated measurement (CASAM). Growth and rupture rates of UIAs were calculated, and both univariate and multivariate Cox regression analyses were conducted. Additionally, Kaplan-Meier survival curves were plotted. RESULTS: A total of 184 patients with 210 aneurysms were enrolled in the study. The follow-up period encompasses 506.6 aneurysm-years and 401.4 patient-years. Among all the aneurysms, 23 aneurysms exhibited growth, with an annual aneurysm growth rate of 11.0%, and 1 (4.5%) experienced rupture, resulting in an annual aneurysm rupture rate of 0.21%. Multivariate Cox analysis identified poorly controlled hypertension (P = 0.011) and high-risk aneurysms (including anterior cerebral artery (ACA), anterior communicating artery (AcoA), posterior communicating artery aneurysm (PcoA), posterior circulation (PC) > 4 mm or distal internal carotid artery (ICAd), middle cerebral artery (MCA), and PC > 7 mm) (P = 0.006) as independent risk factors for the development of unstable aneurysms. CONCLUSIONS: In the elderly, poorly controlled hypertension and high-risk aneurysms emerge as significant risk factors for aneurysm instability. This underscores the importance of rigorous surveillance or timely intervention in patients presenting with these risk factors.


Aneurysm, Ruptured , Hypertension , Intracranial Aneurysm , Humans , Aged , Adult , Child , Intracranial Aneurysm/epidemiology , Risk Factors , Aneurysm, Ruptured/epidemiology , Anterior Cerebral Artery
10.
Front Biosci (Landmark Ed) ; 28(11): 303, 2023 11 27.
Article En | MEDLINE | ID: mdl-38062802

BACKGROUND: Angiogenesis is the formation of blood vessels by sprouting from mature blood vessels and is regulated by multiple factors; however, the role of centrosome and centrosomal proteins (CEP) in angiogenesis needs further study. centrosomal protein 135 (CEP135) is an important centrosome-associated protein that can affect a variety of cellular processes, such as the cell cycle, but its effect on angiogenesis is still unknown. METHODS: Tube formation and in vivo angiogenesis assays were performed to confirm the effects of CEP135 on endothelial cell (EC) angiogenesis in vitro and in mice. Cell counting kit-8 (CCK-8), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry (FCM) and immunoblot assays were performed to confirm the effects of CEP135 on the proliferation and cell cycle of endothelial cells. Wound healing, transwell, and fluorescence staining were performed to confirm its effects on EC cell migration, polarization, and spindle orientation, and a tubulin turbidity assay was performed to confirm its effects on microtubule stabilization. RESULTS: We conducted a series of experiments to explore the potential role of CEP135 in angiogenesis. CEP135 siRNA obviously inhibits angiogenesis in vivo compared with the control. CEP135 could mediate cell proliferation and the cell cycle by mediating spindle orientation. Moreover, we showed that CEP135 is involved in the regulation of angiogenesis by affecting the migration of endothelial cells using wound closure and transwell assays. We further demonstrated that CEP135 promotes endothelial polarization and microtubule stability, thus affecting cell migration. CONCLUSIONS: CEP135 was involved in the polarization of centrosomes, which is important for the migration of human umbilical vein ECs (HUVECs). These findings indicated that CEP135 may promote the polarization of HUVECs and accelerate migration, which in turn promotes angiogenesis.


Endothelial Cells , Neovascularization, Physiologic , Animals , Humans , Mice , Angiogenesis , Cell Movement , Cell Proliferation , Centrosome/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Microtubules/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
11.
BMC Public Health ; 23(1): 2037, 2023 10 18.
Article En | MEDLINE | ID: mdl-37853381

BACKGROUND: In China, data on the prevalence and characteristics of comorbid stroke and traumatic brain injury (TBI) in real-world populations are still lacking but of paramount importance for the evidence-based prevention and control of the comorbidity of the two diseases. This study aimed to investigate the prevalence and characteristics of comorbid stroke and TBI in a real-world population. METHODS: In 2013, a nationally representative, door-to-door survey on stroke and TBI using a complex, multistage, probability sampling design was conducted among approximately 600,000 participants from 155 urban and rural areas in China (Ethic ID: KY2013-006-01). The weighted prevalence of comorbid stroke and TBI was estimated using individuals' final weight. A Poisson regression analysis was used to compare the rate ratio of the comorbidity prevalence among different subgroups of the population, including age, sex, place of residence, and geographic location subgroups. For analyses of associations between the comorbidities and predictors of interest, all other variables were adjusted for in a multinomial logistic regression model. RESULTS: Among the 596,536 people, 219 patients with comorbid stroke and TBI were identified. The point prevalence of comorbid stroke and TBI weighted to the China 2010 census population was 29.30 (95% CI: 22.69-37.84) per 100,000 population in China. The adjusted prevalence of post-TBI stroke in patients with previous TBI was significantly higher than that of post-stroke TBI in patients with previous stroke (6021.3 vs. 811.1 per 100,000 people; rate ratio: 11.001; 95% CI: 8.069-14.998). Patients with nonconcussion had significantly higher rates of both pre-stroke TBI (odds ratio: 4.694; 95% CI: 3.296-6.687) and post-stroke TBI (odds ratio: 6.735; 95% CI: 3.719-12.194) than patients with concussion. Compared to patients with ischaemic stroke, patients with subarachnoid haemorrhage (odds ratio: 2.044; 95% CI: 1.097-3.809) and intracerebral haemorrhage (odds ratio: 1.903; 95% CI: 1.296-2.795) had significantly higher rates of post-TBI stroke. CONCLUSIONS: The high prevalence of stroke among TBI patients is becoming a new public health issue. TBI patients, especially those with nonconcussion TBI, are more likely to develop comorbid stroke and TBI than stroke patients, especially ischaemic stroke patients.


Brain Injuries, Traumatic , Brain Ischemia , Ischemic Stroke , Stroke , Humans , Stroke/epidemiology , Prevalence , Cross-Sectional Studies , Brain Ischemia/epidemiology , Comorbidity , Brain Injuries, Traumatic/epidemiology , Ischemic Stroke/epidemiology
12.
Am J Reprod Immunol ; 90(5): e13791, 2023 11.
Article En | MEDLINE | ID: mdl-37881126

The emerging role of microRNA-935 (miR-935) in modulating cancer progression has been recognized. However, its role in regulating choriocarcinoma (CCA) development and progression remains unknown. The present work aims to reveal the effect of miR-935 on CCA cell tumor properties and the related mechanism. The RNA expression of methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3), miR-935, and gap junction protein alpha 1 (GJA1) was detected by quantitative real-time polymerase chain reaction. Protein expression of GJA1, Ki67, and METTL3 was measured by western blotting and immunohistochemistry assays. CCK-8 and colony formation were used to analyze cell proliferation. Transwell assays were performed to assess cell migration and invasion. Angiogenesis was investigated by tube formation assay. Xenograft mouse model assay was used to determine miR-935-mediated effect on tumor formation in vivo. The luciferase reporter assay and RNA pull-down assay were used to verify the relationship between miR-935 and GJA1. MeRIP assay was used to analyze the m6A methylation of pri-miR-935. MiR-935 expression was significantly upregulated in CCA tissues and cells when compared with control groups. MiR-935 overexpression promoted CCA cell proliferation, migration, invasion, and tube formation and tumor tumorigenesis in vitro and in vivo, but miR-935 knockdown showed the opposite effects. In addition, miR-935 targeted GJA1 and mediated CCA cell tumor properties by negatively regulating GJA1 expression. METTL3 promoted miR-935 maturation by inducing m6A methylation of pri-miR-935, and its overexpression contributed to CCA cell tumor properties through the regulation of miR-935. METTL3 promoted choriocarcinoma progression by m6A-dependently activating the miR-935/GJA1 pathway.


Choriocarcinoma , MicroRNAs , Female , Pregnancy , Humans , Animals , Mice , Cell Line, Tumor , MicroRNAs/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Movement/genetics , Connexin 43/genetics
14.
Macromol Rapid Commun ; 44(23): e2300325, 2023 Dec.
Article En | MEDLINE | ID: mdl-37566735

Biocompatible chitosan-based hydrogels have attracted extensive attention in wound dressing due to their human skin-like tissue characteristics. However, it is a crucial challenge to fabricate chitosan-based hydrogels with versatile properties, including flexibility, stretchability, adhesivity, and antibacterial activity. In this work, a kind of chitosan-based hydrogels with integrated functionalities are facilely prepared by solution polymerization of acrylamide (AAm) and sodium p-styrene sulfonate (SS) in the presence of quaternized carboxymethyl chitosan (QCMCS). Due to the dual cross-linking between QCMCS and P(AAm-co-SS), the optimized QCMCS/P(AAm-co-SS) hydrogel exhibits tough mechanical properties (0.767 MPa tensile stress and 1100% fracture strain) and moderate tissue adhesion (11.4 kPa). Moreover, biological evaluation in vitro illustrated that as-prepared hydrogel possesses satisfactory biocompatibility, hemocompatibility, and excellent antibacterial ability (against S. aureus and E. coli are 98.8% and 97.3%, respectively). Then, the hydrogels are tested in a rat model for bacterial infection incision in vivo, and the results show that they can significantly accelerate epidermal regeneration and wound closure. This is due to their ability to reduce the inflammatory response, promote the formation of collagen deposition and granulation tissue. The proposed chitosan-based antibacterial hydrogels have the potential to be a highly effective wound dressing in clinical wound healing.


Chitosan , Rats , Animals , Humans , Hydrogels/pharmacology , Adhesives , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bandages
15.
J Bone Miner Res ; 38(11): 1635-1644, 2023 11.
Article En | MEDLINE | ID: mdl-37615194

Although the impact of sex hormones on bone metabolism is well-documented, effect of their primary modulator, sex hormone-binding globulin (SHBG), remains inconclusive. This study aims to elucidate the genetic overlap between SHBG and heel estimated bone mineral density (eBMD), a widely-accepted tool for osteoporosis management and fracture risk assessment. Using summary statistics from large-scale genomewide association studies conducted for SHBG (N = 370,125), SHBG adjusted for body mass index (SHBGa, N = 368,929), and eBMD (N = 426,824), a comprehensive genomewide cross-trait approach was performed to quantify global and local genetic correlations, identify pleiotropic loci, and infer causal associations. A significant overall inverse genetic correlation was found for SHBG and eBMD (rg = -0.11, p = 3.34 × 10-10 ), which was further supported by the significant local genetic correlations observed in 11 genomic regions. Cross-trait meta-analysis revealed 219 shared loci, of which seven were novel. Notably, four novel loci (rs6542680, rs8178616, rs147110934, and rs815625) were further demonstrated to colocalize. Mendelian randomization identified a robust causal effect of SHBG on eBMD (beta = -0.22, p = 3.04 × 10-13 ), with comparable effect sizes observed in both men (beta = -0.16, p = 1.99 × 10-6 ) and women (beta = -0.19, p = 2.73 × 10-9 ). Replacing SHBG with SHBGa, the observed genetic correlations, pleiotropic loci and causal associations did not change substantially. Our work reveals a shared genetic basis between SHBG and eBMD, substantiated by multiple pleiotropic loci and a robust causal relationship. Although SHBG has been implicated in preventing and screening aging-related diseases, our findings support its etiological role in osteoporosis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Bone Density , Osteoporosis , Female , Humans , Male , Bone Density/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Minerals/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Phenotype , Sex Hormone-Binding Globulin/genetics , Sex Hormone-Binding Globulin/metabolism
16.
J Org Chem ; 88(16): 11581-11589, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37540629

A novel base-catalyzed method for the synthesis of luminescent benzothiazole derivatives had been developed under metal-free conditions via C-S bond formation, which provided an efficient, convenient, and mild alternative method for constructing substituted benzothiazoles. As-prepared benzothiazole derivatives thus produced emissions in solution with quantum yield up to 85%. In addition, they still exhibited fairly strong fluorescence in the solid state. Furthermore, the compounds were used as a facile "On-Off" fluorescence probe to create handy test strips for detecting NaClO by naked eyes.

17.
Polymers (Basel) ; 15(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37447456

In order to adjust the properties of polyamide 6 (PA6) and expand its application, a new strategy of introducing an aromatic imide structure into the PA6 chain through the random copolymerization method is reported. The diimide diacid monomer was first synthesized by the dehydration and cyclization of pyromellitic dianhydride and 6-aminocaproic acid before it reacted with 1,6-hexamethylene diamine to form poly(amide imide) (PAI) salt, and finally synthesized PA6/PAI random copolymers containing an aromatic imide structure by the random copolymerization of ε-caprolactam and PAI salt. The introduction of an aromatic imide structural unit into the PA6 chain could have a great influence on its properties. As the content of PAI increases, the crystallinity (Xc) and melting temperature (Tm) of the PA6/PAI random copolymer gradually decrease, but its glass transition temperature (Tg) increases obviously. When the PAI content is 20 wt%, the copolymer PA6/PAI-20 has the best comprehensive performance and not only has high thermal stabilities but also excellent mechanical properties (high strength, high modulus, and good toughness) and dielectric properties (low dielectric constant and dielectric loss). Moreover, these properties are significantly superior to those of PA6. Such high-performance PA6 random copolymers can provide great promise for the wider applications of PA6 materials.

18.
Clin Neuroradiol ; 33(4): 1133-1142, 2023 Dec.
Article En | MEDLINE | ID: mdl-37318560

PURPOSE: Neurosurgeons can manage unruptured intracranial aneurysms (UIAs). However, the stability of UIAs under follow-up remains uncertain. This study aimed to examine the risk factors associated with the instability (rupture or growth) of UIAs during follow-up. METHODS: We obtained information on patients with UIA who underwent ≥ 6 months of the time of flight-magnetic resonance angiography (TOF-MRA) imaging follow-up in two centers. Computer-assisted semi-automated measurement (CASAM) techniques were used for recording morphological parameters and determining the growth of these aneurysms. We also recorded hemodynamic parameters at the beginning of the follow-up. The univariate and multivariate Cox regression analyses were performed to calculate hazard ratios with corresponding 95% confidence intervals for the clinical, morphological, and hemodynamic risk factors for aneurysm instability. RESULTS: A total of 304 aneurysms from 263 patients (80.4%) were included for analysis. The annual aneurysm growth rate was 4.7%. Significant predictive factors for aneurysm instability in the multivariate analysis were as follows: poorly controlled hypertension (hazard ratio (HR), 2.97 (95% CI, 1.27-6.98), P = 0.012); aneurysms located on posterior circulation (HR, 7.81 (95% CI, 2.28-26.73), P = 0.001), posterior communication artery (HR, 3.01 (95% CI, 1.07-8.46), P = 0.036), and cavernous carotid artery (HR, 3.78 (95% CI, 1.18-12.17), P = 0.026); and size ratio ≥ 0.87 (HR, 2.54 (95% CI, 1.14-5.68), P = 0.023). CONCLUSIONS: The management of UIAs should focus on the control of hypertension during the follow-up. Aneurysms on the posterior communicating artery, posterior circulation, and cavernous carotid arteries require intensive surveillance or timely treatment.


Aneurysm, Ruptured , Hypertension , Intracranial Aneurysm , Humans , Intracranial Aneurysm/pathology , Risk Factors , Magnetic Resonance Angiography/methods , Hemodynamics , Hypertension/complications , Aneurysm, Ruptured/complications
19.
New Phytol ; 239(5): 1679-1691, 2023 09.
Article En | MEDLINE | ID: mdl-37376720

Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models. We incorporate the physiological effect of salinity and hypoxia in a dynamic vegetation model in the Earth system land model, and used the model to investigate the mechanisms of mortality of conifer forests on the west and east coast sites of USA, where trees experience different form of sea water exposure. Simulations suggest similar physiological mechanisms can result in different mortality patterns. At the east coast site that experienced severe increases in seawater exposure, trees loose photosynthetic capacity and roots rapidly, and both storage carbon and hydraulic conductance decrease significantly within a year. Over time, further consumption of storage carbon that leads to carbon starvation dominates mortality. At the west coast site that gradually exposed to seawater through SLR, hydraulic failure dominates mortality because root loss impacts on conductance are greater than the degree of storage carbon depletion. Measurements and modeling focused on understanding the physiological mechanisms of mortality is critical to reducing predictive uncertainty.


Ecosystem , Tracheophyta , Seawater , Trees , Carbon
20.
Metab Brain Dis ; 38(7): 2465-2476, 2023 10.
Article En | MEDLINE | ID: mdl-37256468

Depression is among the most frequent psychiatric comorbid conditions in Alzheimer disease (AD). However, pharmacotherapy for depressive disorders in AD is still a big challenge, and the data on the efffcacy of current antidepressants used clinically for depressive symptoms in patients with AD remain inconclusive. Here we investigated the mechanism of the interactions between depression and AD, which we believe would aid in the development of pharmacological therapeutics for the comorbidity of depression and AD. Female APP/PS1/Tau triple transgenic (3×Tg-AD) mice at 24 months of age and age- and sex-matched wild-type (WT) mice were used. The shuttle-box passive avoidance test (PAT) were implemented to assess the abilities of learning and memory, and the open field test (OFT) and the tail suspension test (TST) were used to assess depression-like behavior. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used to detect the level of neurotransmitters related to depression in the hippocampus of mice. The data was identified by orthogonal projections to latent structures discriminant analysis (OPLS-DA). Most neurotransmitters exert their effects by binding to the corresponding receptor, so the expression of relative receptors in the hippocampus of mice was detected using Western blot. Compared to WT mice, 3×Tg-AD mice displayed significant cognitive impairment in the PAT and depression-like behavior in the OFT and TST. They also showed significant decreases in the levels of L-tyrosine, norepinephrine, vanillylmandelic acid, 5-hydroxytryptamine, and acetylcholine, in contrast to significant increases in 5-hydroxyindoleacetic acid, L-histidine, L-glutamine, and L-arginine in the hippocampus. Moreover, the expression of the alpha 1a adrenergic receptor (ADRA1A), serotonin 1 A receptor (5HT1A), and γ-aminobutyric acid A receptor subunit alpha-2 (GABRA2) was significantly downregulated in the hippocampus of 3×Tg-AD mice, while histamine H3 receptor (H3R) expression was significantly upregulated. In addition, the ratio of phosphorylated cAMP-response element-binding protein (pCREB) and CREB was significantly decreased in the hippocampus of 3×Tg-AD mice than WT mice. We demonstrated in the present study that aged female 3×Tg-AD mice showed depression-like behavior accompanied with cognitive dysfunction. The complex and diverse mechanism appears not only relevant to the imbalance of multiple neurotransmitter pathways, including the transmitters and receptors of the monoaminergic, GABAergic, histaminergic, and cholinergic systems, but also related to the changes in L-arginine and CREB signaling molecules.


Alzheimer Disease , Cognitive Dysfunction , Mice , Female , Animals , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Mice, Transgenic , Tandem Mass Spectrometry , Depression/drug therapy , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Neurotransmitter Agents/metabolism , Disease Models, Animal , Amyloid beta-Peptides/pharmacology , tau Proteins/metabolism
...